Hybrid methodology based on knn regression and boosting classification techniques for locating faults in distribution systems

This paper presents a hybrid methodology for fault location in power distribution systems, by using a regression technique based on k nearest neighbors and a classification technique which uses multiple simple classifiers in a Boosting strategy. The proposed methodology first subdivides the power system into zones to train the classification technique. Then the parameters of the regression technique are adjusted and the classification technique is trained. Finally, for an unknown case, the regression technique estimates the fault distance, and the classification technique locates the fault in one of the predefined zones, solving the multiple estimation problem. The IEEE34 node test feeder is used to test the proposed fault locator, where a good performance is obtained either in the classification task (minimal precision of 95.7 %) and the regression task (highest absolute error of 8.05%). The proposed method can be easily implemented in a power system, is fast and has low computational effort.

[1]  Ingeniero Electricista,et al.  CARACTERIZACION DE CIRCUITOS DE DISTRIBUCION PARA ESTUDIOS DE CALIDAD EN SISTEMAS DE ENERGIA ELECTRICA , 2012 .

[2]  J. Mora-Florez,et al.  A complete fault location formulation for distribution systems using the k-Nearest Neighbors for regression and classification , 2010, 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA).

[3]  Juan José Mora Flórez,et al.  Strategy based on genetic algorithms for an optimal adjust of a support vector machine used for locating faults in power distribution systems , 2010 .

[4]  Sandra Pérez-Londoño,et al.  Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems , 2009 .

[5]  Juan José Mora Flórez,et al.  Estrategia de regresión basada en el método de los k vecinos más cercanos para la estimación de la distancia de falla en sistemas radiales , 2008 .

[6]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[7]  J. José.,et al.  Localización de faltas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento , 2006 .

[8]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[9]  D. Thukaram,et al.  Neural network approach for fault location in unbalanced distribution networks with limited measurements , 2006, 2006 IEEE Power India Conference.

[10]  Chen-Fu Chien,et al.  Rough set theory for data mining for fault diagnosis on distribution feeder , 2004 .

[11]  P.B.D. Gupta,et al.  Application of RBF neural network to fault classification and location in transmission lines , 2004 .

[12]  Y. S. Lin,et al.  Using Bayesian Network for Fault Location on Distribution Feeder , 2002, IEEE Power Engineering Review.

[13]  Shyh-Jier Huang,et al.  Application of Immune-Based Optimization Method for Fault-Section Estimation in a Distribution System , 2002, IEEE Power Engineering Review.

[14]  N. N. Schulz,et al.  Knowldege-Based System for Distribution System Outage Locating Using Comprehensive Information , 2002, IEEE Power Engineering Review.

[15]  M. S. Sachdev,et al.  Determining locations of faults in distribution systems , 1997 .

[16]  Xiaohua Hu Knowledge discovery in databases: an attribute-oriented rough set approach , 1996 .

[17]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[18]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[19]  Walter Gil-González,et al.  Análisis comparativo de metaheurísticas para calibración de localizadores de fallas en sistemas de distribución , 1969 .

[20]  J. Dagenhart,et al.  The 40-/spl Omega/ ground-fault phenomenon , 2000 .

[21]  Ratana Dāsa,et al.  Determining the locations of faults in distribution systems , 1998 .

[22]  J.T. Lin,et al.  An Expert System for Locating Distribution System Faults , 1991, IEEE Power Engineering Review.