Several properties of short LDPC codes

In this paper, we present several properties on minimum distance(d/sub min/) and girth(G/sub min/) in Tanner graphs for low-density parity-check (LDPC) codes with small left degrees. We show that the distance growth of (2, 4) LDPC codes is too slow to achieve the desired performance. We further give a tight upper bound on the maximum possible girth. The numerical results show that codes with large G/sub min/ could outperform the average performance of regular ensembles of the LDPC codes over binary symmetric channels. The same codes perform about 1.5 dB away from the sphere-packing bound on additive white Gaussian noise channels.

[1]  D. Burshtein,et al.  Upper bounds on the rate of LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[2]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[3]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[4]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[5]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[6]  Shu Lin,et al.  Computationally efficient soft-decision decoding of linear block codes based on ordered statistics , 1996, IEEE Trans. Inf. Theory.

[7]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[8]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[9]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[10]  Brendan J. Frey,et al.  Introduction to the special issue on codes on graphs and iterative algorithms , 2001, IEEE Trans. Inf. Theory.

[11]  Lei Wei,et al.  High-performance iterative Viterbi algorithm for conventional serial concatenated codes , 2002, IEEE Trans. Inf. Theory.

[12]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[13]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[14]  A. Orlitsky,et al.  Stopping sets and the girth of Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[15]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[16]  O. Collins,et al.  A comparison of known codes, random codes, and the best codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[17]  Robert Michael Tanner,et al.  Minimum-distance bounds by graph analysis , 2001, IEEE Trans. Inf. Theory.

[18]  G. David Forney Lower Bounds on Error Probability in the Presence of Large Intersymbol Interference , 1972, IEEE Trans. Commun..

[19]  Lei Wei,et al.  Near-optimal limited-search detection on ISI/CDMA channels and decoding of long convolutional codes , 2000, IEEE Trans. Inf. Theory.

[20]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[21]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[22]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[23]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[24]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[25]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[26]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[27]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.