Shape Measures of Random Increasing k-trees †

Random increasing k-trees represent an interesting, useful class of strongly dependent graphs that have been studied widely, including being used recently as models for complex networks. We study in this paper an informative notion called connectivity-profile and derive, by several analytic means, asymptotic estimates for its expected value, together with the limiting distribution in certain cases; some interesting consequences predicting more precisely the shapes of random k-trees are also given. Our methods of proof rely essentially on a bijection between k-trees and ordinary trees, and the resolution of a linear system.

[1]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[2]  Sein Win,et al.  On a connection between the existence ofk-trees and the toughness of a graph , 1989, Graphs Comb..

[3]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[4]  Alexis Darrasse,et al.  The Connectivity-Profile of Random Increasing k-trees , 2009, ANALCO.

[5]  Hsien-Kuei Hwang,et al.  An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms , 2002, J. Algorithms.

[6]  Svante Janson,et al.  Long and short paths in uniform random recursive dags , 2011 .

[7]  Hsien-Kuei Hwang,et al.  Profiles of random trees: plane-oriented recursive trees (Extended Abstract) † , 2007 .

[8]  Lili Rong,et al.  High-dimensional random Apollonian networks , 2005, cond-mat/0502591.

[9]  L. Newelski,et al.  The ideal determined by the unsymmetric game , 1993 .

[10]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[11]  J. Marckert,et al.  Some families of increasing planar maps , 2007, 0712.0593.

[12]  Abilio Lucena,et al.  Stronger K-tree relaxations for the vehicle routing problem , 2004, Eur. J. Oper. Res..

[13]  Brice Augustin,et al.  Detection, understanding, and prevention of traceroute measurement artifacts , 2008, Comput. Networks.

[14]  J. Guan,et al.  Analytical solution of average path length for Apollonian networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Alexis Darrasse,et al.  Limiting Distribution for Distances in k-Trees , 2009, IWOCA.

[16]  T. Klein,et al.  Martingales and Profile of Binary Search Trees , 2004, math/0410211.

[17]  K. Mehlhorn,et al.  On the Expected Depth of Random Circuits , 1999, Combinatorics, Probability and Computing.

[18]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[19]  Wojciech Szpankowski,et al.  Profiles of Tries , 2008, SIAM J. Comput..

[20]  Hsien-Kuei Hwang,et al.  Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees , 2006, Algorithmica.

[21]  R. Read,et al.  On the Number of Plane 2‐Trees , 1973 .

[22]  Michael Drmota,et al.  Bimodality and Phase Transitions in the Profile Variance of Random Binary Search Trees , 2005, SIAM J. Discret. Math..

[23]  Hsien-Kuei Hwang,et al.  Phase changes in random m‐ary search trees and generalized quicksort , 2001, Random Struct. Algorithms.

[24]  R. Durrett Random Graph Dynamics: References , 2006 .

[25]  Michèle Soria,et al.  Boltzmann sampling of ordered structures , 2009, Electron. Notes Discret. Math..

[26]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[27]  Guohui Lin,et al.  An Improved Approximation Algorithm for Multicast k-Tree Routing , 2005, J. Comb. Optim..

[28]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[29]  Alfs T. Berztiss,et al.  Depth-first K-trees and critical path analysis , 1980, Acta Informatica.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[32]  Pascal Hennequin Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche , 1991 .

[33]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[34]  Jerzy Szymanski,et al.  On the Structure of Random Plane-oriented Recursive Trees and Their Branches , 1993, Random Struct. Algorithms.

[35]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[36]  Hsien-Kuei Hwang,et al.  Transitional behaviors of the average cost of quicksort with median-of-(2t + 1) , 2001, Algorithmica.

[37]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[38]  T. F. Móri On random trees , 2002 .

[39]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[40]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[41]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[42]  D. Greene Labelled formal languages and their uses , 1983 .

[43]  S. Janson,et al.  A functional limit theorem for the profile of search trees. , 2006, math/0609385.

[44]  Alois Panholzer,et al.  Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model , 2010 .

[45]  Helmut Prodinger,et al.  On monotone functions of tree structures , 1983, Discret. Appl. Math..

[46]  Gilbert Labelle,et al.  Labelled and unlabelled enumeration of k-gonal 2-trees , 2004, J. Comb. Theory, Ser. A.

[47]  I. Pávó Generation of the k-trees of a graph , 1971, Acta Cybern..

[48]  Marshall L. Fisher,et al.  Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees , 1994, Oper. Res..

[49]  Yong Gao The degree distribution of random k-trees , 2009, Theor. Comput. Sci..

[50]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .

[51]  Alan M. Frieze,et al.  High Degree Vertices, Eigenvalues and Diameter of Random Apollonian Networks , 2011, ArXiv.

[52]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..