Selective laser ablation/ionization for ion trap mass spectrometry: resonant laser ablation

Laser ablation provides a clean, broadly applicable ionization source for ion trap mass spectrometry. However, the ion storage capacity of an ion trap mass spectrometer requires a degree of selectivity in either the ion generation or ion storage process to allow effective interrogation of minority components. This can be accomplished by low-intensity irradiation of the sample with laser pulses tuned to a one- or two-photon resonant transition in the analyte of interest. Resonant laser ablation is a multistep process involving evaporation and subsequent ionization of a solid sample component of interest. The leading edge of a tunable laser pulse vaporizes near-surface material, which forms a plume directly above the sample. The trailing edge of the pulse preferentially excites, and subsequently ionizes, the component that is in resonance with the incident photons. In this manuscript, we report on the use of resonant laser ablation with an ion trap mass spectrometer for high sensitivity, high selectivity generation of analyte ions from a solid sample.

[1]  P. H. Hemberger,et al.  An improved method for capturing laser desorbed ions in an ion trap mass spectrometer: dynamic r.f. trapping , 1994 .

[2]  P. H. Hemberger,et al.  Silica-fiber microextraction for laser desorption ion trap mass spectrometry , 1994 .

[3]  J. Brodbelt,et al.  Axial introduction of laser-desorbed ions into a quadrupole ion trap mass spectrometer. , 1992, Analytical chemistry.

[4]  M. Blades,et al.  Laser ablation ion trap mass spectrometry: atomic and molecular mass spectrometry of metal, ceramic and polymer samples. Plenary lecture , 1993 .

[5]  G. S. Hurst,et al.  Resonance ionization spectroscopy and one-atom detection , 1979 .

[6]  R. Cooks,et al.  Injection of ions into a quadrupole ion trap mass spectrometer , 1989 .

[7]  F. Verdun,et al.  Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes , 1987 .

[8]  N. S. Nogar,et al.  Calculation of ion yields in atomic multiphoton ionization spectroscopy , 1983 .

[9]  R. P. Singhal,et al.  Laser-induced collisional processes in resonant laser ablation of GaAs , 1992 .

[10]  G. Glish,et al.  Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer , 1993 .

[11]  P. H. Hemberger,et al.  Selective injection of laser desorbed ions into a quadrupole ion trap with a filtered noise field , 1994 .

[12]  R. Cooks,et al.  Mass shifts due to ion/ion interactions in a quadrupole ion‐trap mass spectrometer , 1994 .

[13]  P. H. Hemberger,et al.  Laser desorption in a quadrupole ion trap. Mixture analysis using positive and negative ions , 1993 .

[14]  N. S. Nogar,et al.  Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures , 1988 .

[15]  O. Uy,et al.  Laser desorption from a probe in the cavity of a quadrupole ion storage mass spectrometer , 1989 .

[16]  P. H. Hemberger,et al.  A method of increasing the sensitivity for laser desorption in an ion trap mass spectrometer , 1993, Journal of the American Society for Mass Spectrometry.

[17]  Nicholas S. Nogar,et al.  Resonant Laser Ablation: Semiquantitative Aspects and Threshold Effects , 1994 .

[18]  R. Cotter,et al.  Matrix‐assisted laser desorption/ionization inside a quadrupole ion‐trap detector cell , 1992 .

[19]  E. Yeung,et al.  Laser-enhanced ionization as a diagnostic tool in laser-generated plumes , 1989 .

[20]  N. S. Nogar,et al.  Selective laser photoionization for mass spectrometry , 1982 .

[21]  G. Glish,et al.  Laser desorption mass spectrometry and MS/MS with a three-dimensional quadrupole ion trap , 1989 .

[22]  E. Grant,et al.  Mass spectrometry and its use in tandem with laser spectroscopy. , 1990, Science.

[23]  Nicholas S. Nogar,et al.  The two-photon spectrum of iron and silicon detected by resonant laser ablation , 1994 .