Boolean Lexicographic Optimization

Multi-Objective Combinatorial Optimization (MOCO) problems find a wide range of practical application problems, some of which involving Boolean variables and constraints. This paper develops and evaluates algorithms for solving MOCO problems, defined on Boolean domains, and where the optimality criterion is lexicographic. The proposed algorithms build on existing algorithms for either Maximum Satisfiability (MaxSAT), Pseudo-Boolean Optimization (PBO), or Integer Linear Programming (ILP). Experimental results, obtained on problem instances from haplotyping with pedigrees, show that the proposed algorithms can provide significant performance gains over state of the art MaxSAT, PBO and ILP algorithms.

[1]  Sharad Malik,et al.  On Solving the Partial MAX-SAT Problem , 2006, SAT.

[2]  Olivier Roussel,et al.  A Translation of Pseudo Boolean Constraints to SAT , 2006, J. Satisf. Boolean Model. Comput..

[3]  Nancy V. Phillips,et al.  A Weighting Function for Pre-emptive Multicriteria Assignment Problems , 1987 .

[4]  Felip Manyà,et al.  MaxSAT, Hard and Soft Constraints , 2021, Handbook of Satisfiability.

[5]  Alberto Griggio,et al.  Satisfiability Modulo the Theory of Costs: Foundations and Applications , 2010, TACAS.

[6]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[7]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[8]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[9]  Hector Geffner,et al.  Structural Relaxations by Variable Renaming and Their Compilation for Solving MinCostSAT , 2007, CP.

[10]  Martin Lukasiewycz,et al.  Solving Multi-objective Pseudo-Boolean Problems , 2007, SAT.

[11]  Vasco M. Manquinho,et al.  Pseudo-Boolean and Cardinality Constraints , 2021, Handbook of Satisfiability.

[12]  Vasco M. Manquinho,et al.  Towards More Effective Unsatisfiability-Based Maximum Satisfiability Algorithms , 2008, SAT.

[13]  Adnan Darwiche,et al.  Solving Weighted Max-SAT Problems in a Reduced Search Space: A Performance Analysis , 2008, J. Satisf. Boolean Model. Comput..

[14]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[15]  Vasco M. Manquinho,et al.  Satisfiability-Based Algorithms for Boolean Optimization , 2004, Annals of Mathematics and Artificial Intelligence.

[16]  Kaile Su,et al.  Exploiting Inference Rules to Compute Lower Bounds for MAX-SAT Solving , 2007, IJCAI.

[17]  Inês Lynce,et al.  Haplotype Inference Combining Pedigrees and Unrelated Individuals , .

[18]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[19]  P. Barth A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization , 1995 .

[20]  Olivier Coudert,et al.  On solving covering problems , 1996, DAC '96.

[21]  Josep Argelich,et al.  Solving Linux Upgradeability Problems Using Boolean Optimization , 2010, LoCoCo.

[22]  Igor L. Markov,et al.  Generic ILP versus specialized 0-1 ILP: an update , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[23]  Joost P. Warners,et al.  A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal Form , 1998, Inf. Process. Lett..

[24]  Maria Luisa Bonet,et al.  Solving (Weighted) Partial MaxSAT through Satisfiability Testing , 2009, SAT.

[25]  Josep Argelich,et al.  On Solving Boolean Multilevel Optimization Problems , 2009, IJCAI 2009.

[26]  C. Romero Extended lexicographic goal programming: a unifying approach , 2001 .

[27]  Joao Marques-Silva,et al.  Algorithms for Maximum Satisfiability using Unsatisfiable Cores , 2008, 2008 Design, Automation and Test in Europe.

[28]  Felip Manyà,et al.  New Inference Rules for Max-SAT , 2007, J. Artif. Intell. Res..

[29]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[30]  Andreas Kuehlmann,et al.  A fast pseudo-Boolean constraint solver , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[31]  Nic Wilson,et al.  Lexicographically-ordered constraint satisfaction problems , 2009, Constraints.