A Limited-Memory Multipoint Symmetric Secant Method for Bound Constrained Optimization

A new algorithm for solving smooth large-scale minimization problems with bound constraints is introduced. The way of dealing with active constraints is similar to the one used in some recently introduced quadratic solvers. A limited-memory multipoint symmetric secant method for approximating the Hessian is presented. Positive-definiteness of the Hessian approximation is not enforced. A combination of trust-region and conjugate-gradient approaches is used to explore useful information. Global convergence is proved for a general model algorithm. Results of numerical experiments are presented.

[1]  Roberto Andreani,et al.  On the solution of the extended linear complementarity problem , 1998 .

[2]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[3]  Oleg Burdakov,et al.  Stable versions of the secants method for solving systems of equations , 1983 .

[4]  V. Torczon,et al.  A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .

[5]  Achiya Dax,et al.  A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .

[6]  R. Schnabel Quasi-Newton Methods Using Multiple Secant Equations. , 1983 .

[7]  Roberto Andreani,et al.  The reformulation of nonlinear complementarity problems using the Fischer-burmeister function , 1999 .

[8]  Francisco Facchinei,et al.  An Active Set Newton Algorithm for Large-Scale Nonlinear Programs with Box Constraints , 1998, SIAM J. Optim..

[9]  Ana Friedlander,et al.  New algorithms for maximization of concave functions with box constraints , 1992 .

[10]  Z. Dostál,et al.  Duality-based domain decomposition with natural coarse-space for variational inequalities0 , 2000 .

[11]  Ana Friedlander,et al.  On the numerical solution of bound constrained optimization problems , 1989 .

[12]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[13]  Zdenek Dostál,et al.  Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..

[14]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[15]  José Mario Martínez,et al.  Reformulation of Variational Inequalities on a Simplex and Compactification of Complementarity Problems , 1999, SIAM J. Optim..

[16]  J. M. Martínez,et al.  A new trust region algorithm for bound constrained minimization , 1994 .

[17]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[18]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[19]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[20]  José Mario Martínez,et al.  Three new algorithms based on the sequential secant method , 1979 .

[21]  Oleg Burdakov,et al.  Methods of the secant type for systems of equations with symmetric jacobian matrix , 1983 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Z. Dostál,et al.  Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians , 1996 .

[24]  J. M. Martínez,et al.  Solution of Finite-Dimensional Variational Inequalities Using Smooth Optimization with Simple Bounds , 1997 .

[25]  Oleg Burdakov,et al.  Stable symmetric secant methods with restart , 1991 .

[26]  B. Friedlander,et al.  An Adaptive Algorithm for Bound Constrained Quadratic Minimization , 1997 .

[27]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[28]  José Mario Martínez,et al.  Validation of an Augmented Lagrangian Algorithm with a Gauss-Newton Hessian Approximation Using a Set of Hard-Spheres Problems , 2000, Comput. Optim. Appl..

[29]  Zdeněk Dostál,et al.  Solution of Coercive and Semicoercive Contact Problems by FETI Domain Decomposition , 1998 .

[30]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[31]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[32]  M. Raydan On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .

[33]  Philip E. Gill,et al.  Limited-Memory Reduced-Hessian Methods for Large-Scale Unconstrained Optimization , 2003, SIAM J. Optim..

[34]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[35]  Zdenek Dostál,et al.  Augmented Lagrangians with Adaptive Precision Control for Quadratic Programming with Equality Constraints , 1999, Comput. Optim. Appl..

[36]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[37]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[38]  Oleg Burdakov,et al.  On Superlinear Convergence of Some Stable Variants of the Secant Method , 1986 .

[39]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[40]  Ana Friedlander,et al.  On the Maximization of a Concave Quadratic Function with Box Constraints , 1994, SIAM J. Optim..

[41]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..

[42]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[43]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.