Sounds are remapped across saccades

To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.

[1]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[2]  M. Frens,et al.  Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements , 1995, Perception & psychophysics.

[3]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[4]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[5]  Robert B. Welch,et al.  The interaction of vision and audition in two-dimensional space , 2015, Front. Neurosci..

[6]  A. Belopolsky,et al.  Target–Distractor Competition in the Oculomotor System Is Spatiotopic , 2014, The Journal of Neuroscience.

[7]  Daniel J Tollin,et al.  Effect of eye position on saccades and neuronal responses to acoustic stimuli in the superior colliculus of the behaving cat. , 2004, Journal of neurophysiology.

[8]  Gregory C. DeAngelis,et al.  Diverse Spatial Reference Frames of Vestibular Signals in Parietal Cortex , 2013, Neuron.

[9]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[10]  J. Theeuwes,et al.  Eye movement trajectories and what they tell us , 2006, Neuroscience & Biobehavioral Reviews.

[11]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. , 1999, Journal of neurophysiology.

[13]  Adrian K. C. Lee,et al.  Directing Eye Gaze Enhances Auditory Spatial Cue Discrimination , 2014, Current Biology.

[14]  S. Inati,et al.  Eye Position Influences Auditory Responses in Primate Inferior Colliculus , 2001, Neuron.

[15]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[16]  Brigitte Röder,et al.  Eye-movement-driven changes in the perception of auditory space , 2010, Attention, perception & psychophysics.

[17]  J. Theeuwes,et al.  Remembering a Location Makes the Eyes Curve Away , 2005, Psychological science.

[18]  H H Goossens,et al.  Influence of head position on the spatial representation of acoustic targets. , 1999, Journal of neurophysiology.

[19]  A. King,et al.  The superior colliculus , 2004, Current Biology.

[20]  R. Walker,et al.  Multisensory interactions in saccade target selection: Curved saccade trajectories , 2001, Experimental Brain Research.

[21]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[22]  David A. Bulkin,et al.  Distribution of eye position information in the monkey inferior colliculus. , 2012, Journal of neurophysiology.

[23]  T. Heed,et al.  Towards explaining spatial touch perception: Weighted integration of multiple location codes , 2016, Cognitive neuropsychology.

[24]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[25]  G. S. Russo,et al.  Frontal eye field activity preceding aurally guided saccades. , 1994, Journal of neurophysiology.

[26]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[27]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[28]  Bruce E. Torbett,et al.  Understanding the rules of the road: proteomic approaches to interrogate the blood brain barrier , 2015, Front. Neurosci..

[29]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[30]  Patrick Cavanagh,et al.  Saccades create similar mislocalizations in visual and auditory space. , 2016, Journal of neurophysiology.

[31]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[32]  Frans W Cornelissen,et al.  The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[33]  M. A. Frens,et al.  A quantitative study of auditory-evoked saccadic eye movements in two dimensions , 2004, Experimental Brain Research.

[34]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[35]  Jennifer M Groh,et al.  Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus. , 2012, Journal of neurophysiology.

[36]  Jon Driver,et al.  Eye-movements intervening between two successive sounds disrupt comparisons of auditory location , 2008, Experimental Brain Research.

[37]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[38]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. , 1999, Journal of neurophysiology.

[39]  C. Blakemore,et al.  Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus , 1988, Nature.

[40]  G. Rizzolatti,et al.  Orienting of attention and eye movements , 2004, Experimental Brain Research.

[41]  Eliana M. Klier,et al.  The superior colliculus encodes gaze commands in retinal coordinates , 2001, Nature Neuroscience.

[42]  Stefan Van der Stigchel,et al.  Auditory spatial attention is encoded in a retinotopic reference frame across eye-movements , 2018, PloS one.

[43]  Stefan Van der Stigchel,et al.  Saccades curve away from previously inhibited locations: evidence for the role of priming in oculomotor competition. , 2013, Journal of neurophysiology.

[44]  A. King,et al.  The shape of ears to come: dynamic coding of auditory space , 2001, Trends in Cognitive Sciences.

[45]  Daniel Guitton,et al.  Two distinct types of remapping in primate cortical area V4 , 2016, Nature Communications.

[46]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[47]  D. Sparks,et al.  Sensory and motor maps in the mammalian superior colliculus , 1987, Trends in Neurosciences.

[48]  Ralf Engbert,et al.  Microsaccades are triggered by low retinal image slip. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Joyce Vliegen,et al.  Dynamic Sound Localization during Rapid Eye-Head Gaze Shifts , 2004, The Journal of Neuroscience.

[50]  Stephen R. Arnott,et al.  The auditory dorsal pathway: Orienting vision , 2011, Neuroscience & Biobehavioral Reviews.

[51]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[52]  M. Rolfs,et al.  Remapping Attention Pointers: Linking Physiology and Behavior , 2016, Trends in Cognitive Sciences.

[53]  David L. Sparks,et al.  Sensori-motor integration in the primate superior colliculus , 1991 .

[54]  A. V. van Opstal,et al.  Influence of Static Eye and Head Position on Tone-Evoked Gaze Shifts , 2011, The Journal of Neuroscience.

[55]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[56]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[57]  J. Theeuwes,et al.  Oculomotor interference of bimodal distractors , 2016, Vision Research.

[58]  M. Meeter,et al.  A model of curved saccade trajectories: Spike rate adaptation in the brainstem as the cause of deviation away , 2014, Brain and Cognition.

[59]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[60]  Heiner Deubel,et al.  Pre-saccadic remapping relies on dynamics of spatial attention , 2018, bioRxiv.