Characterizations of Image Acquisition and Epipolar Geometry of Multiple Panoramas

Recently multiple panoramic images have emerged and received increasingly interests in applications of 3D scene visualization and reconstruction. There is a need to characterize and clarify their common natures and differences so that a more general form/framework or a better computational model can be further discovered or developed. This paper introduces some notions at an abstract level for characterizing the essential components of panoramic image acquisition models. A general computational model is proposed to describe the family of cylindrical panoramas. The epipolar geometry of the cylindrical panoramic pairs for a general and a leveled case are particularly studied.

[1]  M. Landy,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[2]  Yi-Ping Hung,et al.  Panoramic Stereo Imaging System with Automatic Disparity Warping and Seaming , 1998, Graph. Model. Image Process..

[3]  Reinhard Klette,et al.  Geometrical fundamentals of polycentric panoramas , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Shou-Kang Wei,et al.  Three-dimensional View Synthesis From Multiple Images , 1999 .

[5]  Ralf Reulke,et al.  CCD-Line Digital Imager for Photogrammetry in Architecture , 1997 .

[6]  Sanjiv Singh,et al.  Analysis and Design of Panoramic Stereo Vision Using Equi-Angular Pixel Cameras , 1999 .

[7]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  Yael Pritch,et al.  Cameras for stereo panoramic imaging , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Ralf Reulke,et al.  Der Drei-Zeilen CCD-Stereo-Scanner WAAC: Grundaufbau und Anwendungen in der Photogrammetrie , 1998 .

[11]  Reinhard Klette,et al.  Epipolar Geometry in Polycentric Panoramas , 2000, Theoretical Foundations of Computer Vision.

[12]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[13]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[14]  Takashi Matsuyama,et al.  Cooperative Distributed Vision: Dynamic Integration of Visual Perception, Action, and Communication , 1999, KI.

[15]  Shmuel Peleg,et al.  Stereo panorama with a single camera , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[16]  Richard Szeliski,et al.  3-D Scene Data Recovery Using Omnidirectional Multibaseline Stereo , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[18]  Reinhard Klette,et al.  Three-Dimensional Scene Navigation Through Anaglyphic Panorama Visualization , 1999, CAIP.

[19]  Harry Shum,et al.  Rendering with concentric mosaics , 1999, SIGGRAPH.

[20]  Reinhard Klette,et al.  Computer vision - three-dimensional data from images , 1998 .

[21]  Shenchang Eric Chen,et al.  QuickTime VR: an image-based approach to virtual environment navigation , 1995, SIGGRAPH.

[22]  Gang Xu,et al.  Epipolar Geometry in Stereo, Motion and Object Recognition , 1996, Computational Imaging and Vision.

[23]  Hiroshi Ishiguro,et al.  Omni-Directional Stereo , 1992, IEEE Trans. Pattern Anal. Mach. Intell..