Computational Methods for Extremal Steklov Problems
暂无分享,去创建一个
[1] Robert K. Brayton,et al. A new algorithm for statistical circuit design based on quasi-newton methods and function splitting , 1979 .
[2] Edouard Oudet,et al. Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .
[3] C. Kao,et al. Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues , 2013 .
[4] Pan Cheng,et al. Nyström methods and extrapolation for solving Steklov eigensolutions and its application in elasticity , 2012 .
[5] Pedro Freitas,et al. Optimisation of Eigenvalues of the Dirichlet Laplacian with a Surface Area Restriction , 2016 .
[6] Friedemann Brock,et al. An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .
[7] R. Banuelos,et al. Eigenvalue inequalities for mixed Steklov problems , 2009 .
[8] B. A. Troesch,et al. An isoperimetric sloshing problem , 1965 .
[9] Iosif Polterovich,et al. The legacy of Vladimir Andreevich Steklov , 2014 .
[10] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[11] Iosif Polterovich,et al. Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.
[12] Ahmad El Soufi,et al. Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.
[13] Braxton Osting,et al. Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..
[14] Bodo Dittmar,et al. Sums of reciprocal Stekloff eigenvalues , 2004 .
[15] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[16] R. Laugesen,et al. Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains , 2014, 1412.8073.
[17] Édouard Oudet,et al. Qualitative and Numerical Analysis of a Spectral Problem with Perimeter Constraint , 2016, SIAM J. Control. Optim..
[18] Richard Schoen,et al. The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.
[19] R. Kress. Linear Integral Equations , 1989 .
[20] Robert Weinstock,et al. Inequalities for a Classical Eigenvalue Problem , 1954 .
[21] Eldar Akhmetgaliyev,et al. Fast Numerical Methods for Mixed, Singular Helmholtz Boundary Value Problems and Laplace Eigenvalue Problems - with Applications to Antenna Design, Sloshing, Electromagnetic Scattering and Spectral Geometry , 2016 .
[22] Menahem Schiffer,et al. Some inequalities for Stekloff eigenvalues , 1974 .
[23] Pedro Freitas,et al. Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians , 2012, J. Optim. Theory Appl..
[24] Beniamin Bogosel,et al. The method of fundamental solutions applied to boundary eigenvalue problems , 2016, J. Comput. Appl. Math..
[25] JinHuang,et al. THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .
[26] Pedro R. S. Antunes. Optimization of sums and quotients of Dirichlet-Laplacian eigenvalues , 2013, Appl. Math. Comput..
[27] R. Ibrahim. Liquid Sloshing Dynamics: Theory and Applications , 2005 .
[28] Tadeusz Kulczycki,et al. The shape of the fundamental sloshing mode in axisymmetric containers , 2014 .
[29] Julián Fernández Bonder,et al. Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach , 2006, Annali di Matematica Pura ed Applicata.
[30] Iosif Polterovich,et al. SPECTRAL GEOMETRY OF THE STEKLOV PROBLEM , 2014, 1411.6567.
[31] Jimmy Lamboley,et al. An extremal eigenvalue problem for the Wentzell-Laplace operator , 2014, 1401.7098.
[32] Rongjie Lai,et al. Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces , 2014, 1405.4944.