The Laplacian-energy Like Invariant is an Energy Like Invariant

Short time ago Liu and Liu [MATCH Commun. Math. Comput. Chem. 59 (2008) 355–372] put forward a so-called Laplacian–energy like invariant (LEL), defined as the sum of the square roots of the Laplacian eigenvalues. From its name, one could get the impression that the properties of LEL are similar to those of the Laplacian energy LE . However, already the inventors of LEL realized that LEL resembles much more the ordinary graph energy (E) than LE . We now provide further arguments supporting this conclusion. In particular, numerous earlier obtained bounds and approximations for E can be simply “translated” into bounds and approximations for LEL .

[1]  I. Gutman,et al.  On Incidence Energy of Graphs , 2022 .

[2]  Cybele T. M. Vinagre,et al.  RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY , 2008 .

[3]  Dragan Stevanović,et al.  On the Laplacian coefficients of unicyclic graphs , 2009 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Yanfeng Luo,et al.  On Laplacian-energy-like invariant of a graph < , 2012 .

[6]  Dragan Stevanović,et al.  LARGE SETS OF NONCOSPECTRAL GRAPHS WITH EQUAL LAPLACIAN ENERGY , 2008 .

[7]  Dariush Kiani,et al.  On incidence energy of a graph , 2009 .

[8]  I. Gutman Total π-electron energy of benzenoid hydrocarbons , 1992 .

[9]  Ivan Gutman,et al.  Topology and stability of conjugated hydrocarbons: The dependence of total π-electron energy on molecular topology , 2005 .

[10]  I. Gutman The McClelland approximation and the distribution of π-electron molecular orbital energy levels , 2007 .

[11]  Ernesto Estrada Spectral theory of networks : from biomolecular to ecological systems , 2009 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[14]  R. Merris A survey of graph laplacians , 1995 .

[15]  Aleksandar Ilic,et al.  ON LAPLACIAN LIKE ENERGY OF TREES , 2011, 1103.4814.

[16]  Bo Zhou On sum of powers of the Laplacian eigenvalues of graphs , 2008 .

[17]  E. A. Nordhaus,et al.  On Complementary Graphs , 1956 .

[18]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[19]  C. A. Coulson,et al.  On the calculation of the energy in unsaturated hydrocarbon molecules , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Bolian Liu,et al.  MINIMAL LEL-EQUIENERGETIC GRAPHS , 2009 .

[21]  Dejan Plavsic,et al.  The Laplacian matrix in chemistry , 1994, J. Chem. Inf. Comput. Sci..

[22]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .

[23]  D. Stevanović,et al.  MORE ON THE RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY OF GRAPHS 1 , 2008 .

[24]  I. Gutman NOTE ON LAPLACIAN ENERGY OF GRAPHS , 2008 .

[25]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[26]  B. Mcclelland Properties of the Latent Roots of a Matrix: The Estimation of π‐Electron Energies , 1971 .

[27]  C. Coulson,et al.  Hückel theory for organic chemists , 1978 .

[28]  I. Gutman NORDHAUS-GADDUM-TYPE RELATIONS FOR THE ENERGY AND LAPLACIAN ENERGY OF GRAPHS , 2007 .

[29]  Bo Zhou NEW UPPER BOUNDS FOR LAPLACIAN ENERGY , 2009 .

[30]  D. A. Morales Bounds for the total π-electron energy , 2002 .

[31]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[32]  Ante Graovac,et al.  Topological Approach to the Chemistry of Conjugated Molecules , 1977 .

[33]  Generalizing the McClelland Bounds for Total π-Electron Energy , 2008 .

[34]  Cybele T. M. Vinagre,et al.  THE LAPLACIAN ENERGY OF SOME LAPLACIAN INTEGRAL GRAPHS , 2022 .

[35]  I. Gutman,et al.  The Huckel total π-electron energy puzzle , 2006 .

[36]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[37]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[38]  Hongzhuan Wang,et al.  Note on Laplacian Energy of Graphs , 2008 .

[39]  R. Jiménez,et al.  Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs , 2009 .

[40]  María Robbiano,et al.  Applications of a theorem by Ky Fan in the theory of graph energy , 2010 .

[41]  I. Gutman,et al.  Total π-electron energy and Laplacian energy : How far the analogy goes? , 2007 .

[42]  J. W. Essam,et al.  Counting the spanning trees of a labelled molecular-graph , 1983 .