Combinations of Spok genes create multiple meiotic drivers in Podospora

Meiotic drive is the preferential transmission of a particular allele at a given locus during sexual reproduction. The phenomenon is observed as spore killing in a variety of fungal lineages, including Podospora. In natural populations of Podospora anserina, seven spore killers (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlie the Psk spore killers. The combination of the various Spok genes at different chromosomal locations defines the spore killers and creates a killing hierarchy within the same population. We identify two novel Spok homologs that are located within a complex region (the Spok block) that reside in different chromosomal locations in given natural strains. We confirm that the individual SPOK proteins perform both the killing and resistance functions and show that these activities are dependent on distinct domains, a nuclease and a kinase domain respectively. Genomic data and phylogenetic analysis across ascomycetes suggest that the Spok genes disperse via cross-species transfer, and evolve by duplication and diversification within several lineages.

[1]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2019, Bioinform..

[2]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[3]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[4]  S. Kelly,et al.  OrthoFinder2: fast and accurate phylogenomic orthology analysis from gene sequences , 2018, bioRxiv.

[5]  Janet M. Young,et al.  Killer Meiotic Drive and Dynamic Evolution of the wtf Gene Family , 2018, bioRxiv.

[6]  María Angélica Bravo Núñez,et al.  A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver’s antidote , 2018, PLoS genetics.

[7]  L. Hennig,et al.  Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements , 2018, Nature Communications.

[8]  P. Wincker,et al.  A gene graveyard in the genome of the fungus Podospora comata , 2018, Molecular Genetics and Genomics.

[9]  L. Baxter,et al.  Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae , 2018, Scientific Reports.

[10]  V. Ranwez,et al.  MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons , 2018, Molecular biology and evolution.

[11]  María Angélica Bravo Núñez,et al.  Genetic Villains: Killer Meiotic Drivers. , 2018, Trends in genetics : TIG.

[12]  Iker Irisarri,et al.  PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences , 2018, Bioinform..

[13]  D. Brodersen,et al.  Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. , 2018, Molecular cell.

[14]  Anthony J. Geneva,et al.  Gene flow mediates the role of sex chromosome meiotic drive during complex speciation , 2018, bioRxiv.

[15]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[16]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[17]  C. Boucher,et al.  Species Delimitation in the Podospora anserina/ p. pauciseta/p. comata Species Complex (Sordariales) , 2017, Cryptogamie, Mycologie.

[18]  Markus Hiltunen,et al.  Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma , 2017, Nature Communications.

[19]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[20]  L. Du,et al.  A large gene family in fission yeast encodes spore killers that subvert Mendel’s law , 2017, eLife.

[21]  Janet M. Young,et al.  wtf genes are prolific dual poison-antidote meiotic drivers , 2017, eLife.

[22]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[23]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[24]  Niklaus J Grünwald,et al.  vcfr: a package to manipulate and visualize variant call format data in R , 2017, Molecular ecology resources.

[25]  Petr Danecek,et al.  BCFtools/csq: haplotype-aware variant consequences , 2016, bioRxiv.

[26]  Andrey D. Prjibelski,et al.  Icarus: visualizer for de novo assembly evaluation , 2016, Bioinform..

[27]  H. Kokko,et al.  The ecology and evolutionary dynamics of meiotic drive , 2018 .

[28]  Dmitry Antipov,et al.  hybridSPAdes: an algorithm for hybrid assembly of short and long reads , 2016, Bioinform..

[29]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[30]  Ana Conesa,et al.  Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data , 2015, Bioinform..

[31]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[32]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[33]  C. Rada,et al.  CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex , 2015, Nucleic acids research.

[34]  Zhian N. Kamvar,et al.  Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality , 2015, Front. Genet..

[35]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[36]  Jianchu Xu,et al.  Towards a natural classification and backbone tree for Sordariomycetes , 2015, Fungal Diversity.

[37]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[38]  Zhiyong Wang,et al.  Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning , 2013, Bioinform..

[39]  C. Montchamp-Moreau,et al.  Sex chromosome drive. , 2015, Cold Spring Harbor perspectives in biology.

[40]  M. Yandell,et al.  Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.

[41]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[42]  David G. Rehard,et al.  A Critical Component of Meiotic Drive in Neurospora Is Located Near a Chromosome Rearrangement , 2014, Genetics.

[43]  H. Lalucque,et al.  Genes That Bias Mendelian Segregation , 2014, PLoS genetics.

[44]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[45]  D. Aanen,et al.  Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection , 2014, Molecular biology and evolution.

[46]  Jason E Stajich,et al.  NEUROSPORA AND THE DEAD‐END HYPOTHESIS: GENOMIC CONSEQUENCES OF SELFING IN THE MODEL GENUS , 2013, Evolution; international journal of organic evolution.

[47]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[48]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[49]  D. Fong,et al.  Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance , 2013, Front. Cell. Infect. Microbiol..

[50]  M. Prieto,et al.  Dating the Diversification of the Major Lineages of Ascomycota (Fungi) , 2013, PloS one.

[51]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[52]  S. Eddy,et al.  Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions , 2013, Nucleic acids research.

[53]  P. Silar Podospora anserina: From Laboratory to Biotechnology , 2013 .

[54]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[55]  Thomas L. Vincent,et al.  LOGICOIL - multi-state prediction of coiled-coil oligomeric state , 2013, Bioinform..

[56]  Sven Rahmann,et al.  Snakemake--a scalable bioinformatics workflow engine. , 2012, Bioinformatics.

[57]  A. Larracuente,et al.  The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster , 2012, Genetics.

[58]  David G. Rehard,et al.  Molecular dissection of Neurospora Spore killer meiotic drive elements , 2012, Proceedings of the National Academy of Sciences.

[59]  Leszek Rychlewski,et al.  Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily , 2012, Nucleic acids research.

[60]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[61]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[62]  J. Werren Selfish genetic elements, genetic conflict, and evolutionary innovation , 2011, Proceedings of the National Academy of Sciences.

[63]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[64]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[65]  Sivaraman Balakrishnan,et al.  Learning generative models for protein fold families , 2011, Proteins.

[66]  Cole Trapnell,et al.  Role of Rodent Secondary Motor Cortex in Value-based Action Selection Nih Public Access Author Manuscript , 2006 .

[67]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[68]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[69]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[70]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[71]  Piero Fariselli,et al.  CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information , 2009, Bioinform..

[72]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[73]  Jeong-Sun Kim,et al.  The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity , 2009, Nucleic acids research.

[74]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[75]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[76]  Zhao Xu,et al.  A fungal phylogeny based on 82 complete genomes using the composition vector method , 2009, BMC Evolutionary Biology.

[77]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[78]  R. Hoekstra,et al.  Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence. , 2008, Biotechnology journal.

[79]  M. Szczelkun,et al.  A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I , 2008, Nucleic acids research.

[80]  A. Boivin,et al.  Gene deletion and allelic replacement in the filamentous fungus Podospora anserina , 2008, Current Genetics.

[81]  J. Poulain,et al.  The genome sequence of the model ascomycete fungus Podospora anserina , 2008, Genome Biology.

[82]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[83]  E. Coppin,et al.  Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina. , 2007, Mycological research.

[84]  Kengo Kinoshita,et al.  PrDOS: prediction of disordered protein regions from amino acid sequence , 2007, Nucleic Acids Res..

[85]  Gerard Manning,et al.  Structural and Functional Diversity of the Microbial Kinome , 2007, PLoS biology.

[86]  B. Charlesworth,et al.  Chromosome-wide linkage disequilibrium as a consequence of meiotic drive , 2007, Proceedings of the National Academy of Sciences.

[87]  J. R. Lobry,et al.  SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis , 2007 .

[88]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[89]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[90]  R. Trivers,et al.  Genes in Conflict , 2006 .

[91]  M. Borodovsky,et al.  Gene identification in novel eukaryotic genomes by self-training algorithm , 2005, Nucleic acids research.

[92]  A. Debets,et al.  Genomic conflicts in Podospora anserina = Genomische conflicten in Podospora anserina , 2005 .

[93]  Revue de Cytologie et de Cytophysiologie végétales , 2005, Protoplasma.

[94]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[95]  H. Osiewacz,et al.  Genetic analysis of spore killing in the filamentous ascomycete Podospora anserina. , 2004, Fungal genetics and biology : FG & B.

[96]  J. Robinson,et al.  Genetic Diversity of Human Pathogenic Members of the Fusarium oxysporum Complex Inferred from Multilocus DNA Sequence Data and Amplified Fragment Length Polymorphism Analyses: Evidence for the Recent Dispersion of a Geographically Widespread Clonal Lineage and Nosocomial Origin , 2004, Journal of Clinical Microbiology.

[97]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[98]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[99]  H. Osiewacz,et al.  A novel family of linear plasmids with homology to plasmid pAL2-1 of Podospora anserina , 1995, Molecular and General Genetics MGG.

[100]  R. Hoekstra,et al.  Spore Killing in the Fungus Podospora Anserina: A Connection Between Meiotic Drive and Vegetative Incompatibility? , 2004, Genetica.

[101]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[102]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[103]  V. Wood,et al.  Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. , 2003, Genome research.

[104]  R. Hoekstra,et al.  Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Vincent Moulton,et al.  NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks , 2002, WABI.

[106]  A. Clark,et al.  Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. , 2001, Genetics.

[107]  M. Picard,et al.  Genome quality control: RIP (repeat‐induced point mutation) comes to Podospora , 2001, Molecular microbiology.

[108]  B. C. Turner Geographic distribution of neurospora spore killer strains and strains resistant to killing. , 2001, Fungal genetics and biology : FG & B.

[109]  R. Hoekstra,et al.  Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina. , 2000, Genetics.

[110]  F. Feller,et al.  The degenerate DNA transposon Pat and repeat-induced point mutation (RIP) in Podospora anserina , 2000, Molecular and General Genetics MGG.

[111]  A. B. Carvalho,et al.  Are Drosophila SR drive chromosomes always balanced? , 1999, Heredity.

[112]  M. V. D. Gaag,et al.  The dynamics of pAL2-1 homologous linear plasmids in Podospora anserina , 1998, Molecular and General Genetics MGG.

[113]  W. Rice,et al.  The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen , 1997, Behavioral Ecology and Sociobiology.

[114]  B. Berger,et al.  MultiCoil: A program for predicting two‐and three‐stranded coiled coils , 1997, Protein science : a publication of the Protein Society.

[115]  M. Rossignol,et al.  Plasticity of the mitochondrial genome in Podospora. Polymorphism for 15 optional sequences: group-I, group-II introns, intronic ORFs and an intergenic region , 1997, Current Genetics.

[116]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[117]  Randall F. Smith,et al.  Identification of a eukaryotic‐like protein kinase gene in Archaebacteria , 1995, Protein science : a publication of the Protein Society.

[118]  M. Nauta,et al.  Evolutionary dynamics of spore killers. , 1993, Genetics.

[119]  L. Silver,et al.  The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. , 1993, Trends in genetics : TIG.

[120]  J. Crow Why is Mendelian segregation so exact? , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  D. D. Perkins,et al.  Meiotic Drive in Neurospora and Other Fungi , 1991, The American Naturalist.

[122]  T. W. Lyttle Segregation distorters. , 1991, Annual review of genetics.

[123]  M. Hammer,et al.  Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Werren,et al.  Selfish genetic elements. , 1988, Trends in ecology & evolution.

[125]  D. D. Perkins,et al.  Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. , 1979, Genetics.

[126]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Bernet,et al.  [Mode of action of the genes responsible for abortion of certain products of meiosis in the Ascomycete, Podospora anserina]. , 1967, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.

[128]  Y. Hiraizumi,et al.  Meiotic Drive in Natural Populations of Drosophila Melanogaster. IV. Instability at the Segregation-Distorter Locus. , 1960, Genetics.

[129]  Y. Hiraizumi,et al.  Meiotic Drive in Natural Populations of Drosophila Melanogaster. I. the Cytogenetic Basis of Segregation-Distortion. , 1959, Genetics.

[130]  E. Novitski,et al.  Meiotic Drive as an Evolutionary Force , 1957, The American Naturalist.