Precise Patterning of Silk Microstructures Using Photolithography

Photolithography is used in conjunction with a "silk fibroin photoresist" to form precise protein microstructures directly and rapidly on a variety of substrates. High-resolution features in two and three dimensions with line widths down to one micrometer are formed. Photo-crosslinked protein structures guide cell adhesion, providing precise spatial control of cells without requiring adhesive ligands.

[1]  David L Kaplan,et al.  Silk as a Biomaterial. , 2007, Progress in polymer science.

[2]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[3]  P. Yager,et al.  Comparative Structural Characterization of Naturally- and Synthetically-Spun Fibers of Bombyx mori Fibroin , 1998 .

[4]  Jason B. Shear,et al.  Multiphoton Lithography of Unconstrained Three‐Dimensional Protein Microstructures , 2013 .

[5]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[6]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[7]  Biman B Mandal,et al.  Cell proliferation and migration in silk fibroin 3D scaffolds. , 2009, Biomaterials.

[8]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[9]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[10]  G. Whitesides,et al.  Microfabrication meets microbiology , 2007, Nature Reviews Microbiology.

[11]  Gregory F Payne,et al.  Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. , 2004, Trends in biotechnology.

[12]  T. Park,et al.  Integration of Cell Culture and Microfabrication Technology , 2003, Biotechnology progress.

[13]  Gilbert C. Walker,et al.  Finite Sample Thickness Effects on Elasticity Determination Using Atomic Force Microscopy , 1999 .

[14]  G. Ravichandran,et al.  Lithographic patterning of photoreactive cell-adhesive proteins. , 2007, Journal of the American Chemical Society.

[15]  S. Heilshorn,et al.  Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings. , 2012, Journal of materials chemistry.

[16]  A. Cass,et al.  Protein patterning with a photoactivatable derivative of biotin. , 1996, Bioconjugate chemistry.

[17]  H. Tao,et al.  Protein‐Protein Nanoimprinting of Silk Fibroin Films , 2013, Advanced materials.

[18]  G. Whitesides,et al.  Soft lithography in biology and biochemistry. , 2001, Annual review of biomedical engineering.

[19]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[20]  Federico Rosei,et al.  Photonic crystals: Sustainable sensors from silk. , 2013, Nature materials.

[21]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[22]  E. Kumacheva,et al.  Patterning surfaces with functional polymers. , 2008, Nature materials.

[23]  P. Cremer,et al.  Light activated patterning of dye-labeled molecules on surfaces. , 2003, Journal of the American Chemical Society.

[24]  Carl A. Batt,et al.  Biotemplated Nanostructured Materials , 2008 .

[25]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[26]  C. Botta,et al.  Precise surface patterning of silk fibroin films by breath figures , 2012 .

[27]  David L. Kaplan,et al.  High-strength silk protein scaffolds for bone repair , 2012, Proceedings of the National Academy of Sciences.

[28]  V. Yadavalli,et al.  Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[29]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[30]  Wei Zhang,et al.  A biosynthetic route to photoclick chemistry on proteins. , 2010, Journal of the American Chemical Society.

[31]  Maneesh K. Gupta,et al.  Utilizing conformational changes for patterning thin films of recombinant spider silk proteins. , 2012, Biomacromolecules.

[32]  David L. Kaplan,et al.  Silk inverse opals , 2012, Nature Photonics.

[33]  Sergio Fantini,et al.  Implantable, multifunctional, bioresorbable optics , 2012, Proceedings of the National Academy of Sciences.

[34]  Michael S. Goldberg,et al.  Nanostructured materials for applications in drug delivery and tissue engineering , 2007, Journal of biomaterials science. Polymer edition.

[35]  B. Lotz,et al.  The chemical structure and the crystalline structures of Bombyx mori silk fibroin. , 1979, Biochimie.

[36]  C. Decker,et al.  Photoinitiated crosslinking polymerisation , 1996 .

[37]  Ray Gunawidjaja,et al.  Mechanical Properties of Robust Ultrathin Silk Fibroin Films , 2007 .