The nuclear envelopathies and human diseases

[1]  Abena B. Redwood,et al.  Novel roles for A‐type lamins in telomere biology and the DNA damage response pathway , 2009, The EMBO journal.

[2]  M. Hetzer,et al.  The role of nuclear pores in gene regulation, development and disease , 2009 .

[3]  M. Hetzer,et al.  Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo , 2009, The Journal of cell biology.

[4]  S. Young,et al.  Laminopathies and the long strange trip from basic cell biology to therapy. , 2009, The Journal of clinical investigation.

[5]  M. Hetzer,et al.  The role of nuclear pores in gene regulation, development and disease , 2009, EMBO reports.

[6]  Min Han,et al.  SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice , 2009, Proceedings of the National Academy of Sciences.

[7]  A. Miele,et al.  Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. , 2009, Genes & development.

[8]  S. Gasser,et al.  Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. , 2009, Genes & development.

[9]  Kuan-Teh Jeang,et al.  Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice , 2009, International journal of cancer.

[10]  J. Ward,et al.  Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA , 2009, Development.

[11]  U. Kutay,et al.  Orchestrating nuclear envelope disassembly and reassembly during mitosis , 2009, Nature Reviews Molecular Cell Biology.

[12]  K. Jeang,et al.  Requirements for Protein Phosphorylation and the Kinase Activity of Polo-like Kinase 1 (Plk1) for the Kinetochore Function of Mitotic Arrest Deficiency Protein 1 (Mad1)* , 2008, Journal of Biological Chemistry.

[13]  B. Kennedy,et al.  Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. , 2008, Molecular biology of the cell.

[14]  C. Stewart,et al.  Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation , 2008, Nature Cell Biology.

[15]  Chen-Yang Shen,et al.  Model of human aging: Recent findings on Werner’s and Hutchinson-Gilford progeria syndromes , 2008, Clinical interventions in aging.

[16]  M. Boxus,et al.  The HTLV-1 Tax interactome , 2008, Retrovirology.

[17]  E. Bertolino,et al.  Transcriptional repression mediated by repositioning of genes to the nuclear lamina , 2008, Nature.

[18]  K. Jeang,et al.  Histone Acetyltransferase hALP and Nuclear Membrane Protein hsSUN1 Function in De-condensation of Mitotic Chromosomes* , 2007, Journal of Biological Chemistry.

[19]  Min Han,et al.  SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. , 2007, Developmental cell.

[20]  P. Fraser,et al.  Nuclear organization of the genome and the potential for gene regulation , 2007, Nature.

[21]  R. Foisner,et al.  A-type lamin networks in light of laminopathic diseases. , 2007, Biochimica et biophysica acta.

[22]  Francis S. Collins,et al.  Human laminopathies: nuclei gone genetically awry , 2006, Nature Reviews Genetics.

[23]  Juliet A. Ellis,et al.  Emery-Dreifuss muscular dystrophy at the nuclear envelope: 10 years on , 2006, Cellular and Molecular Life Sciences CMLS.

[24]  Y. Gruenbaum,et al.  The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy. , 2006, Journal of structural biology.

[25]  M. Fornerod,et al.  Characterization of the Drosophila melanogaster genome at the nuclear lamina , 2006, Nature Genetics.

[26]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[27]  F. Hediger,et al.  Nuclear pore association confers optimal expression levels for an inducible yeast gene , 2006, Nature.

[28]  F. Collins,et al.  Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Thomas Cremer,et al.  Chromosome territories--a functional nuclear landscape. , 2006, Current opinion in cell biology.

[30]  Y. Hiraoka,et al.  Meiotic Proteins Bqt1 and Bqt2 Tether Telomeres to Form the Bouquet Arrangement of Chromosomes , 2006, Cell.

[31]  Richard T. Lee,et al.  Prelamin A and lamin A appear to be dispensable in the nuclear lamina. , 2006, The Journal of clinical investigation.

[32]  A. Terzic,et al.  Early aging–associated phenotypes in Bub3/Rae1 haploinsufficient mice , 2006, The Journal of cell biology.

[33]  U. K. Laemmli,et al.  Nup-PI: the nucleopore-promoter interaction of genes in yeast. , 2006, Molecular cell.

[34]  K. Jeganathan,et al.  The Rae1–Nup98 complex prevents aneuploidy by inhibiting securin degradation , 2005, Nature.

[35]  D. Dilworth,et al.  Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. , 2005, Molecular biology of the cell.

[36]  N. Amariglio,et al.  The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation , 2005, Journal of Cell Science.

[37]  A. Noegel,et al.  The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope , 2005, Journal of Cell Science.

[38]  David J. Chen,et al.  Genomic instability in laminopathy-based premature aging , 2005, Nature Medicine.

[39]  C. López-Otín,et al.  Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. , 2005, Human molecular genetics.

[40]  N. Daigle,et al.  LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly , 2004, Journal of Cell Science.

[41]  Florence Hediger,et al.  The function of nuclear architecture: a genetic approach. , 2004, Annual review of genetics.

[42]  J. Harper,et al.  Visualization of a highly organized intranuclear network of filaments in living mammalian cells. , 2004, Cell motility and the cytoskeleton.

[43]  M. Bergo,et al.  Lamin B1 is required for mouse development and nuclear integrity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Yosef Gruenbaum,et al.  Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Worman,et al.  How do mutations in lamins A and C cause disease? , 2004, The Journal of clinical investigation.

[46]  D. Spector,et al.  The dynamics of chromosome organization and gene regulation. , 2003, Annual review of biochemistry.

[47]  C. Vigouroux,et al.  LMNA mutations in atypical Werner's syndrome , 2003, The Lancet.

[48]  John R Yates,et al.  Nuclear Membrane Proteins with Potential Disease Links Found by Subtractive Proteomics , 2003, Science.

[49]  L. Mounkes,et al.  A progeroid syndrome in mice is caused by defects in A-type lamins , 2003, Nature.

[50]  Laura Scott,et al.  Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome , 2003, Nature.

[51]  A. Cohen,et al.  A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. , 2003, The Journal of clinical endocrinology and metabolism.

[52]  J. Hoeijmakers,et al.  Aging and Genome Maintenance: Lessons from the Mouse? , 2003, Science.

[53]  R. Wozniak,et al.  The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint , 2002, The Journal of cell biology.

[54]  G. Scarano,et al.  Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. , 2002, American journal of human genetics.

[55]  D. E. Olins,et al.  Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huët anomaly) , 2002, Nature Genetics.

[56]  Min Han,et al.  Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. , 2002, Molecular biology of the cell.

[57]  C. Stewart,et al.  Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. , 2002, American journal of human genetics.

[58]  Juliet A. Ellis,et al.  The cell cycle dependent mislocalisation of emerin may contribute to the Emery-Dreifuss muscular dystrophy phenotype. , 2002, Journal of cell science.

[59]  W. Gerald,et al.  MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells , 2001, Nature.

[60]  K. Arahata,et al.  Nuclear envelope proteins and associated diseases , 2000, Current opinion in neurology.

[61]  F. Baas,et al.  Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). , 2000, Human molecular genetics.

[62]  S. Bione,et al.  Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. , 2000, American journal of human genetics.

[63]  M. Lovett,et al.  Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. , 2000, American journal of human genetics.

[64]  S. Sen,et al.  Aneuploidy and cancer , 2000, Current opinion in oncology.

[65]  J. Seidman,et al.  Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. , 1999, The New England journal of medicine.

[66]  Brian Burke,et al.  Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy , 1999, The Journal of cell biology.

[67]  F. Muntoni,et al.  Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy , 1999, Nature Genetics.

[68]  S. Manilal,et al.  The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. , 1996, Human molecular genetics.

[69]  A. Murray,et al.  Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast , 1995, The Journal of cell biology.

[70]  E. Maestrini,et al.  Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy , 1994, Nature Genetics.

[71]  B. Thiers Phenotype and Course of Hutchinson–Gilford Progeria Syndrome , 2009 .

[72]  J. Ward,et al.  Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. , 2007, Cancer research.

[73]  D. E. Olins,et al.  Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene model for human Pelger-Huët anomaly. , 2003, Human molecular genetics.

[74]  R. Hegele,et al.  Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. , 2000, Human molecular genetics.