Strong couplings for static locally tree-like random graphs

The goal of this paper is to provide a general purpose result for the coupling of exploration processes of random graphs, both undirected and directed, with their local weak limits when this limit is a marked Galton-Watson process. This class includes in particular the configuration model and the family of inhomogeneous random graphs with rank-1 kernel. Vertices in the graph are allowed to have attributes on a general separable metric space and can potentially influence the construction of the graph itself. The coupling holds for any fixed depth of a breadth-first exploration process.

[1]  Nelly Litvak,et al.  Generalized PageRank on directed configuration networks , 2017, Random Struct. Algorithms.

[2]  Mariana Olvera-Cravioto,et al.  PageRank on inhomogeneous random digraphs , 2020, Stochastic Processes and their Applications.

[3]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[4]  K. Ramanan,et al.  Marginal dynamics of interacting diffusions on unimodular Galton–Watson trees , 2020, Probability Theory and Related Fields.

[5]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[7]  Ningyuan Chen,et al.  Directed Random Graphs with given Degree Distributions , 2012, 1207.2475.

[8]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[9]  Fan Chung Graham,et al.  Probabilistic methods in massive graphs and internet computing , 2002 .

[10]  R. E. Fagen,et al.  The Number of Components in Random Linear Graphs , 1959 .

[11]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[12]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[13]  R. Durrett Random Graph Dynamics: References , 2006 .

[14]  Piet Van Mieghem,et al.  Distances in random graphs with finite variance degrees , 2005, Random Struct. Algorithms.

[15]  Ilkka Norros,et al.  On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.

[16]  Fan Chung Graham,et al.  The Volume of the Giant Component of a Random Graph with Given Expected Degrees , 2006, SIAM J. Discret. Math..

[17]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[18]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[19]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[20]  C. Villani Optimal Transport: Old and New , 2008 .

[21]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks. Vol. II , 2014 .

[22]  Remco van der Hofstad,et al.  Universality for the Distance in Finite Variance Random Graphs , 2006 .

[23]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[24]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .

[25]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[26]  Mariana Olvera-Cravioto PageRank’s behavior under degree correlations , 2021 .

[27]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[28]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[29]  Stochastic recursions on directed random graphs , 2020, 2010.09596.

[30]  K. Ramanan,et al.  LOCAL WEAK CONVERGENCE AND PROPAGATION OF ERGODICITY FOR SPARSE NETWORKS OF INTERACTING PROCESSES , 2020 .

[31]  Piet Van Mieghem,et al.  Three-query PCPs with perfect completeness over non-Boolean domains , 2005 .

[32]  Remco van der Hofstad,et al.  Local weak convergence for PageRank , 2018, The Annals of Applied Probability.

[33]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .