The bacterial flagellar switch complex is getting more complex

[1]  D. Blair,et al.  Mutational Analysis of the Flagellar Protein FliG: Sites of Interaction with FliM and Implications for Organization of the Switch Complex , 2006, Journal of bacteriology.

[2]  G. Cecchini,et al.  Differences in Protonation of Ubiquinone and Menaquinone in Fumarate Reductase from Escherichia coli* , 2006, Journal of Biological Chemistry.

[3]  F. Armstrong,et al.  Electron transfer and catalytic control by the iron-sulfur clusters in a respiratory enzyme, E. coli fumarate reductase. , 2005, Journal of the American Chemical Society.

[4]  Seiji Kojima,et al.  The bacterial flagellar motor: structure and function of a complex molecular machine. , 2004, International review of cytology.

[5]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[6]  Shahid Khan,et al.  Binding of the Chemotaxis Response Regulator CheY to the Isolated, Intact Switch Complex of the Bacterial Flagellar Motor , 2003, Journal of Biological Chemistry.

[7]  S. Iwata,et al.  Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation , 2003, Science.

[8]  J. W. Campbell,et al.  FlhD/FlhC Is a Regulator of Anaerobic Respiration and the Entner-Doudoroff Pathway through Induction of the Methyl-Accepting Chemotaxis Protein Aer , 2003, Journal of bacteriology.

[9]  A. Zehnder,et al.  The Global Regulatory hns Gene Negatively Affects Adhesion to Solid Surfaces by Anaerobically Grown Escherichia coli by Modulating Expression of Flagellar Genes and Lipopolysaccharide Production , 2002, Journal of bacteriology.

[10]  R. Gunsalus,et al.  Succinate dehydrogenase and fumarate reductase from Escherichia coli. , 2002, Biochimica et biophysica acta.

[11]  C. Lancaster,et al.  Succinate:quinone oxidoreductases: an overview. , 2002, Biochimica et biophysica acta.

[12]  S. Iwata,et al.  Purification, crystallisation and preliminary crystallographic studies of succinate:ubiquinone oxidoreductase from Escherichia coli. , 2002, Biochimica et biophysica acta.

[13]  D. DeRosier,et al.  Structures of Bacterial Flagellar Motors from Two FliF-FliG Gene Fusion Mutants , 2001, Journal of bacteriology.

[14]  F. Armstrong,et al.  Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. , 2001, Biochemistry.

[15]  D. Rees,et al.  Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex. , 2000, Current opinion in structural biology.

[16]  D. Rees,et al.  Overexpression, purification, and crystallization of the membrane-bound fumarate reductase from Escherichia coli. , 2000, Protein expression and purification.

[17]  G. Cecchini,et al.  Anaerobic Expression of Escherichia coli Succinate Dehydrogenase: Functional Replacement of Fumarate Reductase in the Respiratory Chain during Anaerobic Growth , 1998, Journal of bacteriology.

[18]  S. Caplan,et al.  Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor. , 1998, Journal of molecular biology.

[19]  Wolfgang Marwan,et al.  Regulation of Switching Frequency and Bias of the Bacterial Flagellar Motor by CheY and Fumarate , 1998, Journal of bacteriology.

[20]  Michael Eisenbach,et al.  Bacterial chemotaxis: Unsolved mystery of the flagellar switch , 1998, Current Biology.

[21]  A. Bren,et al.  The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. , 1998, Journal of molecular biology.

[22]  D. Oesterhelt,et al.  Phosphorylation-independent bacterial chemoresponses correlate with changes in the cytoplasmic level of fumarate , 1996, Journal of bacteriology.

[23]  M. Eisenbach,et al.  Control of bacterial chemotaxis , 1996, Molecular microbiology.

[24]  M. Eisenbach,et al.  Mutants with Defective Phosphatase Activity Show No Phosphorylation-dependent Oligomerization of CheZ , 1996, The Journal of Biological Chemistry.

[25]  M. Eisenbach,et al.  The specificity of fumarate as a switching factor of the bacterial flagellar motor , 1996, Molecular microbiology.

[26]  D. Blair,et al.  Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN , 1996, Journal of bacteriology.

[27]  M. Welch,et al.  Rotational asymmetry of Escherichia coli flagellar motor in the presence of arsenate. , 1995, Biochimica et biophysica acta.

[28]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[29]  K. Oosawa,et al.  Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro , 1994, Journal of bacteriology.

[30]  D J DeRosier,et al.  Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. , 1994, Journal of molecular biology.

[31]  M Welch,et al.  Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Armstrong,et al.  Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay , 1993, FEBS letters.

[33]  R. Gunsalus,et al.  Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones. , 1993, The Journal of biological chemistry.

[34]  R. Macnab,et al.  Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  I. Khan,et al.  The cytoplasmic component of the bacterial flagellar motor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Eisenbach,et al.  Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes , 1992, Journal of bacteriology.

[37]  D. Oesterhelt,et al.  Signal transduction in Halobacterium depends on fumarate. , 1990, The EMBO journal.

[38]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[39]  R. Gunsalus,et al.  Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. , 1989, The Journal of biological chemistry.

[40]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[41]  P. Matsumura,et al.  Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Gunsalus,et al.  Transcription of the Escherichia coli fumarate reductase genes (frdABCD) and their coordinate regulation by oxygen, nitrate, and fumarate , 1985, Journal of bacteriology.

[43]  L. Enquist,et al.  Experiments With Gene Fusions , 1984 .

[44]  M. Eisenbach,et al.  Direction of flagellar rotation in bacterial cell envelopes , 1984, Journal of bacteriology.

[45]  J. Adler,et al.  Bacterial cell envelopes with functional flagella. , 1981, The Journal of biological chemistry.

[46]  J. Guest Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. , 1981, Journal of general microbiology.

[47]  J. S. Parkinson,et al.  Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis , 1978, Journal of bacteriology.

[48]  B. Ackrell,et al.  [47] Mammalian succinate dehydrogenase , 1978 .

[49]  B. Ackrell,et al.  Mammalian succinate dehydrogenase. , 1978, Methods in enzymology.

[50]  J. Adler,et al.  Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli , 1974, Nature.

[51]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[52]  M. Villarejo,et al.  Construction and Properties of Escherichia coli Strains Exhibiting α-Complementation of β-Galactosidase Fragments In Vivo , 1972, Journal of bacteriology.

[53]  P. Stanley,et al.  Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. , 1969, Analytical biochemistry.