Optimal Stopping for Non-Linear Expectations - Part I

We develop a theory for solving continuous time optimal stopping problems for non-linear expectations. Our motivation is to consider problems in which the stopper uses risk measures to evaluate future rewards. Our development is presented in two parts. In the first part, we will develop the stochastic analysis tools that will be essential in solving the optimal stopping problems, which will be presented in Bayraktar and Yao (2011) [1].

[1]  S. Peng,et al.  Filtration-consistent nonlinear expectations and related g-expectations , 2002 .

[2]  Erhan Bayraktar,et al.  Quadratic Reflected BSDEs with Unbounded Obstacles , 2010, 1005.3565.

[3]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[4]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .

[5]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  On Quadratic g-Evaluations/Expectations and Related Analysis , 2009, 0905.3941.

[8]  Jin Ma,et al.  Representation Theorems for Quadratic F-Consistent Nonlinear Expectations , 2007 .

[9]  V. Benes Existence of Optimal Strategies Based on Specified Information, for a Class of Stochastic Decision Problems , 1970 .

[10]  Ioannis Karatzas,et al.  Martingale approach to stochastic differential games of control and stopping. , 2008, 0808.3656.

[11]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[12]  Long Jiang,et al.  Convexity, translation invariance and subadditivity for g-expectations and related risk measures , 2008 .

[13]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[14]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[15]  Ying Hu,et al.  A Converse Comparison Theorem for BSDEs and Related Properties of g-Expectation , 2000 .

[16]  I. Karatzas,et al.  Martingale Approach to Stochastic Control with Discretionary Stopping , 2006 .

[17]  J. Bion-Nadal Time consistent dynamic risk processes , 2009 .

[18]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[19]  S. Peng Nonlinear Expectations, Nonlinear Evaluations and Risk Measures , 2004 .

[20]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[21]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[22]  Erhan Bayraktar,et al.  Optimal Stopping for Non-Linear Expectations - Part II , 2009 .

[23]  Ying Hu,et al.  Quadratic BSDEs with convex generators and unbounded terminal conditions , 2007, math/0703423.

[24]  Game approach to the optimal stopping problem† , 2005 .

[25]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .