Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA

Multi-subunit RNA polymerases (RNAPs) in all three domains of life share a common ancestry. The composition of the archaeal RNAP (aRNAP) is not identical between phyla and species, with subunits Rpo8 and Rpo13 found in restricted subsets of archaea. While Rpo8 has an ortholog, Rpb8, in the nuclear eukaryal RNAPs, Rpo13 lacks clear eukaryal orthologs. Here, we report crystal structures of the DNA-bound and free form of the aRNAP from Sulfolobus shibatae. Together with biochemical and biophysical analyses, these data show that Rpo13 C-terminus binds non-specifically to double-stranded DNA. These interactions map on our RNAP–DNA binary complex on the downstream DNA at the far end of the DNA entry channel. Our findings thus support Rpo13 as a RNAP–DNA stabilization factor, a role reminiscent of eukaryotic general transcriptional factors. The data further yield insight into the mechanisms and evolution of RNAP–DNA interaction.

[1]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[2]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[3]  V. Ramakrishnan,et al.  Crystal structure of globular domain of histone H5 and its implications for nucleosome binding , 1993, Nature.

[4]  S. Bell,et al.  Preparation of components of archaeal transcription preinitiation complex. , 2001, Methods in enzymology.

[5]  S. Bell,et al.  Factor requirements for transcription in the Archaeon Sulfolobus shibatae , 1997, The EMBO journal.

[6]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[7]  P. Thuriaux,et al.  Structure-function analysis of RNA polymerases I and III. , 2009, Current opinion in structural biology.

[8]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[9]  David Alderton,et al.  A versatile ligation-independent cloning method suitable for high-throughput expression screening applications , 2007, Nucleic acids research.

[10]  X. Huang,et al.  Initiation Complex Structure and Promoter Proofreading , 2011, Science.

[11]  T. D. Brock,et al.  Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature , 2004, Archiv für Mikrobiologie.

[12]  B. Simmons,et al.  A single-base resolution map of an archaeal transcriptome. , 2010, Genome research.

[13]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[14]  M. F. White,et al.  Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes , 2010, Archaea.

[15]  K. Nishikawa,et al.  Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. , 2006, Journal of molecular biology.

[16]  D I Stuart,et al.  Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. , 1979, Journal of molecular biology.

[17]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[18]  R. Casero,et al.  Polyamine cell signaling : physiology, pharmacology, and cancer research , 2006 .

[19]  Y. Levy Intrinsically disordered regions as affinity tuners in protein–DNA interactions , 2012 .

[20]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[21]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[22]  Gerhard Hummer,et al.  This is an open-access article distributed under the terms of the Creative Commons Public Domain declara... , 2008 .

[23]  A. Dunker,et al.  Evolution and disorder. , 2011, Current opinion in structural biology.

[24]  B. Wallace,et al.  Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. , 2008, Biopolymers.

[25]  Bin Xue,et al.  Archaic chaos: intrinsically disordered proteins in Archaea , 2010, BMC Systems Biology.

[26]  D. Stuart,et al.  Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure , 2009, PLoS biology.

[27]  W. Zillig,et al.  In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[29]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[30]  A. Lyubartsev,et al.  Spermine: an "invisible" component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study. , 2001, Journal of molecular biology.

[31]  T. Thomas,et al.  Role of Polyamines in Regulation of Sequence-Specific DNA Binding Activity , 2006 .

[32]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[33]  B. Rost,et al.  Protein disorder--a breakthrough invention of evolution? , 2011, Current opinion in structural biology.

[34]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[35]  Shunichi Takeda,et al.  Single-stranded DNA-binding protein hSSB1 is critical for genomic stability , 2008, Nature.

[36]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[37]  Albert J R Heck,et al.  RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. , 2010, Molecular cell.

[38]  S. S. Cairns,et al.  Transcriptional regulation of an archaeal operon in vivo and in vitro. , 1999, Molecular cell.

[39]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[40]  S. Bell,et al.  Archaeal RNA polymerase: the influence of the protruding stalk in crystal packing and preliminary biophysical analysis of the Rpo13 subunit. , 2011, Biochemical Society transactions.