Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates

This part contains new interior pointwise error estimates for the finite element method for second order elliptic problems in $\mathbb R^N$. Global estimates were considered in Part I. In the sense to be discussed below, these sharpen known interior quasi-optimal $L_\infty$ and $W^1_\infty$ estimates in that they indicate a more local dependence of the error at a point on the derivatives of the solution near the point. The higher the order of the finite element the more local the behavior of the finite element approximation. As a consequence of these estimates, new types of local error expansions will be derived which are in the form of inequalities. These expansion inequalities are valid for large classes of finite elements defined on irregular grids in $\mathbb R^N$ and have applications to superconvergence, extrapolation, and a posteriori estimates for both smooth and nonsmooth problems.

[1]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[2]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[3]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[4]  Frank Natterer,et al.  Über die punktweise Konvergenz Finiter Elemente , 1975 .

[5]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[6]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[7]  A. H. Schatz,et al.  On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces* , 1982 .

[8]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[9]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[10]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[11]  R. Rannacher,et al.  Zur L∞-Konvergenz linearer finiter Elemente beim Dirichlet-Problem , 1976 .

[12]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .

[13]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[14]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .