Search for non-Abelian Majorana braiding statistics in superconductors

This is a tutorial review of methods to braid the world lines of non-Abelian anyons (Majorana zero-modes) in topological superconductors. That "Holy Grail" of topological quantum information processing has not yet been reached in the laboratory, but there now exists a variety of platforms in which one can search for the Majorana braiding statistics. After an introduction to the basic concepts of braiding we discuss how one might be able to braid immobile Majorana zero-modes, bound to the end points of a nanowire, by performing the exchange in parameter space, rather than in real space. We explain how Coulomb interaction can be used to both control and read out the braiding operation, even though Majorana zero-modes are charge neutral. We ask whether the fusion rule might provide for an easier pathway towards the demonstration of non-Abelian statistics. In the final part we discuss an approach to braiding in real space, rather than parameter space, using vortices injected into a chiral Majorana edge mode as "flying qubits". Contents: I. Introduction II. Basic Concepts (The magic of braiding; Non-Abelian statistics; Fusion rules; Clifford gates; Topological protection) III. Braiding of Majorana zero-modes in nanowires (The three-point turn; Non-Abelian Berry phase; Coulomb-assisted braiding; Anyon teleportation) IV. Read-out of Majorana qubits (Majorana interferometry; Inductive coupling to a flux qubit; Microwave coupling to a transmon qubit; Capacitive coupling to a quantum dot; Random Access Majorana Memory) V. Fusion of Majorana zero-modes in nanowires (Linear junction or tri-junction; If we can fuse, do we need to braid?) VI. How to braid Majorana edge modes (Chiral edge modes in a superconductor; Edge vortex injection; Construction of the vortex operator; Edge vortex braiding)

[1]  C. Beenakker,et al.  Time-resolved electrical detection of chiral edge vortex braiding , 2019, SciPost Physics.

[2]  Zhu-An Xu,et al.  Exploring Topological Superconductivity in Topological Materials , 2019, Advanced Quantum Technologies.

[3]  California,et al.  Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding , 2019, 1905.10248.

[4]  J. Sau,et al.  Scheme for Majorana Manipulation Using Magnetic Force Microscopy , 2019, 1905.09792.

[5]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[6]  C. Beenakker,et al.  Pfaffian Formula for Fermion Parity Fluctuations in a Superconductor and Application to Majorana Fusion Detection , 2019, Annals of Physics.

[7]  C. Beenakker,et al.  Deterministic Creation and Braiding of Chiral Edge Vortices. , 2018, Physical review letters.

[8]  M. Hatridge,et al.  Braiding quantum circuit based on the 4π Josephson effect , 2018, Physical Review B.

[9]  Charles M. Marcus,et al.  Realizing Majorana zero modes in superconductor-semiconductor heterostructures , 2018 .

[10]  L. Mazza,et al.  Braiding Majorana zero modes using quantum dots , 2018, Physical Review B.

[11]  X. Qi,et al.  Topological quantum computation based on chiral Majorana fermions , 2017, Proceedings of the National Academy of Sciences.

[12]  Y. Oreg,et al.  Majorana zero modes in superconductor–semiconductor heterostructures , 2017, Nature Reviews Materials.

[13]  R. Aguado Majorana quasiparticles in condensed matter , 2017, 1711.00011.

[14]  Daniel Litinski,et al.  Braiding by Majorana tracking and long-range CNOT gates with color codes , 2017, 1708.05012.

[15]  S. Sarma,et al.  Probability and braiding statistics in Majorana nanowires , 2016, 1610.08958.

[16]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[17]  T. Stanescu Introduction to Topological Quantum Matter & Quantum Computation , 2016 .

[18]  E. Gibney Inside Microsoft’s quest for a topological quantum computer , 2016, Nature.

[19]  C. Nayak,et al.  The Nature and Correction of Diabatic Errors in Anyon Braiding , 2016 .

[20]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[21]  L. Fu,et al.  Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.

[22]  S. Fujimoto,et al.  Majorana Fermions and Topology in Superconductors , 2016, 1601.02726.

[23]  Zhenghan Wang,et al.  Degeneracy Implies Non-abelian Statistics , 2015, 1508.04793.

[24]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[25]  C. Marcus,et al.  Semiconductor-Nanowire-Based Superconducting Qubit. , 2015, Physical review letters.

[26]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[27]  C. Beenakker,et al.  Minimal circuit for a flux-controlled Majorana qubit in a quantum spin-Hall insulator , 2014, 1407.2851.

[28]  M. Franz,et al.  Colloquium : Majorana fermions in nuclear, particle, and solid-state physics , 2014, 1403.4976.

[29]  M. F. Gonzalez-Zalba,et al.  A high-sensitivity gate-based charge sensor in silicon , 2014, 1405.2755.

[30]  C. W. J. Beenakker,et al.  Flux-controlled quantum computation with Majorana fermions , 2013, 1303.4379.

[31]  S. Tewari,et al.  Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  E. Demler,et al.  Proposal for coherent coupling of Majorana zero modes and superconducting qubits using the 4π Josephson effect. , 2013, Physical review letters.

[33]  K. West,et al.  Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2. , 2013, Physical review letters.

[34]  E. Bocquillon Electron quantum optics in quantum Hall edge channels , 2012 .

[35]  M. Leijnse,et al.  Introduction to topological superconductivity and Majorana fermions , 2012, 1206.1736.

[36]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[37]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[38]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[39]  C. Beenakker,et al.  Coulomb-assisted braiding of Majorana fermions in a Josephson junction array , 2011, 1111.6001.

[40]  G. Refael,et al.  Manipulating Majorana fermions using supercurrents , 2011, 1110.6193.

[41]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[42]  Rok Zitko,et al.  SNEG - Mathematica package for symbolic calculations with second-quantization-operator expressions , 2011, Comput. Phys. Commun..

[43]  C. Beenakker,et al.  The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation , 2011, 1105.0315.

[44]  J. Nilsson,et al.  Probing Majorana edge states with a flux qubit , 2011, 1101.0604.

[45]  A. Stern,et al.  Observing Majorana bound states of Josephson vortices in topological superconductors , 2010, Proceedings of the National Academy of Sciences.

[46]  S. Tewari,et al.  Controlling non-Abelian statistics of Majorana fermions in semiconductor nanowires , 2010, 1012.0561.

[47]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[48]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[49]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[50]  Liang Fu,et al.  Electron teleportation via Majorana bound states in a mesoscopic superconductor. , 2009, Physical review letters.

[51]  L. Fu,et al.  Probing neutral Majorana fermion edge modes with charge transport. , 2009, Physical review letters.

[52]  C. Beenakker,et al.  Electrically detected interferometry of Majorana fermions in a topological insulator. , 2009, Physical review letters.

[53]  Jens Koch,et al.  Life after charge noise: recent results with transmon qubits , 2008, Quantum Inf. Process..

[54]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[55]  Oded Zilberberg,et al.  Controlled-NOT gate for multiparticle qubits and topological quantum computation based on parity measurements , 2007, 0708.1062.

[56]  B. Rosenow,et al.  Bulk-edge coupling in the non-Abelian nu=5/2 quantum hall interferometer. , 2007, Physical review letters.

[57]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[58]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[59]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[60]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[61]  M. Fisher,et al.  Edge states and tunneling of non-Abelian quasiparticles in theν=5∕2quantum Hall state andp+ipsuperconductors , 2006, cond-mat/0607431.

[62]  I. Klich,et al.  Minimal excitation states of electrons in one-dimensional wires. , 2006, Physical review letters.

[63]  S. Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2005, quant-ph/0511178.

[64]  A. Kitaev,et al.  Detecting non-Abelian statistics in the nu = 5/2 fractional quantum hall state. , 2005, Physical review letters.

[65]  B. Halperin,et al.  Proposed experiments to probe the non-Abelian nu = 5/2 quantum hall state. , 2005, Physical review letters.

[66]  M. Fisher,et al.  74 31 v 1 1 8 Ju l 2 00 6 Edge states and tunneling of non-Abelian quasiparticles in the ν = 5 / 2 quantum Hall state and p + ip superconductors , 2006 .

[67]  M. Freedman,et al.  Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.

[68]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical review letters.

[69]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[70]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[71]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[72]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[73]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[74]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[75]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[76]  G. Volovik Fermion zero modes on vortices in chiral superconductors , 1999, cond-mat/9909426.

[77]  J. von Delft,et al.  Bosonization for beginners — refermionization for experts , 1998, cond-mat/9805275.

[78]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[79]  Nazarov,et al.  Virtual electron diffusion during quantum tunneling of the electric charge. , 1990, Physical review letters.

[80]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[81]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .