Flat Acceleration in Symbolic Model Checking

Symbolic model checking provides partially effective verification procedures that can handle systems with an infinite state space. So-called “acceleration techniques” enhance the convergence of fixpoint computations by computing the transitive closure of some transitions. In this paper we develop a new framework for symbolic model checking with accelerations. We also propose and analyze new symbolic algorithms using accelerations to compute reachability sets.

[1]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1997, Fundam. Informaticae.

[2]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[3]  Anca Muscholl,et al.  Permutation rewriting and algorithmic verification , 2007, Inf. Comput..

[4]  Laure Petrucci,et al.  FAST: Fast Acceleration of Symbolikc Transition Systems , 2003, CAV.

[5]  Jan K. Pachl,et al.  Protocol Description and Analysis Based on a State Transition Model with Channel Expressions , 1987, PSTV.

[6]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[7]  Laurent Fribourg,et al.  Petri Nets, Flat Languages and Linear Arithmetic , 2000, WFLP.

[8]  Pierre Wolper,et al.  The Power of QDDs , 1997 .

[9]  Nils Klarlund,et al.  MONA Implementation Secrets , 2000, Int. J. Found. Comput. Sci..

[10]  Bernard Boigelot,et al.  An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems (Extended Abstract) , 1997, CAV.

[11]  Vincent Danos,et al.  Reversible Communicating Systems , 2004, CONCUR.

[12]  Marcus Nilsson,et al.  Regular Model Checking , 2000, CAV.

[13]  Laurent Fribourg,et al.  Proving Safety Properties of Infinite State Systems by Compilation into Presburger Arithmetic , 1997, CONCUR.

[14]  Patrick Cousot,et al.  Abstract interpretation , 1996, CSUR.

[15]  Oscar H. Ibarra,et al.  Counter Machines and Verification Problems , 2002, Theor. Comput. Sci..

[16]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[17]  Giorgio Delzanno,et al.  Covering sharing trees: a compact data structure for parameterized verification , 2004, International Journal on Software Tools for Technology Transfer.

[18]  Ahmed Bouajjani,et al.  TReX: A Tool for Reachability Analysis of Complex Systems , 2001, CAV.

[19]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[20]  Andrei Voronkov,et al.  BRAIN : Backward Reachability Analysis with Integers , 2002, AMAST.

[21]  C. A. Petri,et al.  Concurrency Theory , 1986, Advances in Petri Nets.

[22]  Grégoire Sutre,et al.  Flat Counter Automata Almost Everywhere! , 2005, ATVA.

[23]  Parosh Aziz Abdulla,et al.  Using Forward Reachability Analysis for Verification of Lossy Channel Systems , 2004, Formal Methods Syst. Des..

[24]  Richard Gerber,et al.  Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic , 1997, CAV.

[25]  Alain Finkel,et al.  Well-abstracted transition systems: application to FIFO automata , 2003, Inf. Comput..

[26]  Pierre Wolper,et al.  Verifying Systems with Infinite but Regular State Spaces , 1998, CAV.

[27]  Ahmed Bouajjani,et al.  Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..

[28]  Amir Pnueli,et al.  Symbolic model checking with rich assertional languages , 2001, Theor. Comput. Sci..

[29]  Antoni Mazurkiewicz,et al.  CONCUR '97: Concurrency Theory , 1997, Lecture Notes in Computer Science.

[30]  Alain Finkel,et al.  About Fast and TReX Accelerations , 2005, Electron. Notes Theor. Comput. Sci..

[31]  Tevfik Bultan,et al.  Widening Arithmetic Automata , 2004, CAV.

[32]  Pierre Wolper,et al.  An efficient automata approach to some problems on context-free grammars , 2000, Inf. Process. Lett..

[33]  Ahmed Bouajjani,et al.  Symbolic Techniques for Parametric Reasoning about Counter and Clock Systems , 2000, CAV.

[34]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[35]  Alain Finkel,et al.  How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.

[36]  Stephan Merz,et al.  Model Checking , 2000 .

[37]  Grégoire Sutre,et al.  On Flatness for 2-Dimensional Vector Addition Systems with States , 2004, CONCUR.

[38]  Pierre Wolper,et al.  The Power of QDDs (Extended Abstract) , 1997, SAS.

[39]  Alain Finkel,et al.  FASTer Acceleration of Counter Automata in Practice , 2004, TACAS.

[40]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[41]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[42]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[43]  Manindra Agrawal,et al.  FST TCS 2002: Foundations of Software Technology and Theoretical Computer Science , 2002, Lecture Notes in Computer Science.