Non-smooth Chemical Freeze-out and Apparent Width of Wide Resonances and Quark Gluon Bags in a Thermal Environment

Here we develop the hadron resonance gas model with the Gaussian mass attenuation. This model allows us to treat the usual hadrons and the quark gluon bags on the same footing and to study the stability of the results obtained within different formulations of the hadron resonance gas model. In this work we perform a successful fit of hadronic multiplicity ratios measured for the center of mass energies √ sNN = 2.7–200 GeV. Also we demonstrate that in a narrow range of collision energy √ sNN = 4.3–4.9 GeV there exist the peculiar irregularities in various thermodynamic quantities calculated at chemical freeze-out. The most remarkable irregularity is an unprecedented jump of the number of effective degrees of freedom observed in this narrow energy range which is seen in all realistic versions of the hadron resonance gas model. Therefore, the developed concept is called the non-smooth chemical freeze-out. We are arguing that these irregularities evidence for the possible formation of quark gluon bags. In order to develop other possible signals of their formation here we study the apparent width of wide hadronic resonances and quark gluon bags in a thermal environment. Two new effects generated for the wide resonances and quark gluon bags by a thermal medium are discussed here: the near threshold thermal resonance enhancement and the near threshold resonance sharpening. On the basis of these effects we argue that the most optimistic chance to find experimentally the quark gluon bags may be related to their sharpening and enhancement in a thermal medium. In this case the wide quark gluon bags may appear directly or in decays as narrow resonances that are absent in the tables of elementary particles and that have the width about 50-120 MeV and the mass about or above 2.5 GeV.

[1]  V. Kuksa Unstable states in quantum theory , 2014, Physics of Particles and Nuclei.

[2]  J. Cleymans,et al.  Chemical freeze-out of strange particles and possible root of strangeness suppression , 2013, 1308.3594.

[3]  K. Bugaev,et al.  The statistical multifragmentation model for liquid-gas phase transition with a compressible nuclear liquid , 2013, 1306.2372.

[4]  K. Bugaev,et al.  A Scientific Analysis of the Preprint arXiv:1301.1828v1 [nucl-th] , 2013, 1306.2485.

[5]  G. Zinovjev,et al.  Critical exponents of the Quark-Gluon bags model with a critical endpoint. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  G. Zinovjev,et al.  Simple solution to the Strangeness Horn description puzzle , 2012, 1208.5968.

[7]  V. Begun,et al.  Hadron-resonance gas at freeze-out: Reminder on the importance of repulsive interactions , 2012, 1208.4107.

[8]  K. Bugaev,et al.  Investigation of hadron multiplicities and hadron yield ratios in heavy ion collisions , 2012, 1204.0103.

[9]  A. Ivanytskyi The critical indices of the quark gluon bags with surface tension model with tricritical endpoint , 2011, 1104.1900.

[10]  J. Cleymans,et al.  The Hagedorn temperature Revisited , 2011, 1103.1463.

[11]  P. Petreczky,et al.  Phase boundary for the chiral transition in ( 2 + 1 )-flavor QCD at small values of the chemical potential , 2010, 1011.3130.

[12]  P. Seyboth,et al.  Onset of deconfinement in nucleus-nucleus collisions: Review for pedestrians and experts , 2010, 1006.1765.

[13]  C. Greiner,et al.  The quark-gluon-plasma phase transition diagram, Hagedorn matter and quark-gluon liquid , 2010, 1002.3119.

[14]  G. Zinovjev,et al.  Regge Trajectories of Quark Gluon Bags , 2010, 1001.1687.

[15]  A. Andronic,et al.  Erratum to “Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition” [Phys. Lett. B 673 (2009) 142] , 2009 .

[16]  K. Bugaev,et al.  Exploring a possible origin of the QCD critical endpoint , 2009, 0904.4420.

[17]  A. Andronic,et al.  Thermal hadron production in relativistic nuclear collisions , 2009, 0901.2909.

[18]  K. Bugaev,et al.  Fresh look at the Hagedorn mass spectrum as seen in the experiments , 2008, 0812.2189.

[19]  L. Ferroni,et al.  Crossover transition in bag-like models , 2008, 0812.1044.

[20]  V. K. Petrov,et al.  Quark gluon bags as reggeons , 2008, 0807.2391.

[21]  K. Bugaev Exactly solvable model for the QCD tricritical endpoint , 2007, 0711.3169.

[22]  C. Jung,et al.  QCD equation of state with almost physical quark masses , 2007, 0710.0354.

[23]  C. Greiner,et al.  Thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields , 2007, 0709.0144.

[24]  K. Bugaev Quark-gluon bags with surface tension , 2007, hep-ph/0703222.

[25]  F. Karsch Hot QCD on the Lattice , 2007 .

[26]  F. Yndurain,et al.  Experimental status of theππisoscalarSwave at low energy:f0(600)pole and scattering length , 2007, hep-ph/0701025.

[27]  Z. Fodor,et al.  The QCD transition temperature: Results with physical masses in the continuum limit , 2006, hep-lat/0609068.

[28]  J. Schaffner-Bielich,et al.  The order, shape and critical point for the quark-gluon plasma phase transition , 2006, nucl-th/0605052.

[29]  A. Andronic,et al.  Hadron production in central nucleus-nucleus collisions at chemical freeze-out , 2005, nucl-th/0511071.

[30]  K. Bugaev,et al.  Exactly Solvable Models: the Road towards a Rigorous Treatment of Phase Transitions in Finite Systems I. Theoretical Description of Phase Transitions in Finite Systems , 2005 .

[31]  J. Cleymans,et al.  Comparison of chemical freeze-out criteria in heavy-ion collisions , 2005, hep-ph/0511094.

[32]  W. Broniowski,et al.  Update of the Hagedorn mass spectrum , 2004, hep-ph/0407290.

[33]  R. Rapp,et al.  Δ(1232) and nucleon spectral functions in hot hadronic matter , 2004, nucl-th/0407050.

[34]  J. Cleymans,et al.  THERMUS - A thermal model package for ROOT , 2004, Comput. Phys. Commun..

[35]  K. Bugaev,et al.  J/ψ suppression in the Mott–Hagedorn resonance gas , 2004 .

[36]  V. Cerný,et al.  Energy and centrality dependence of deuteron and proton production in Pb+Pb collisions at relativistic energies , 2004 .

[37]  K. J. Foley,et al.  Identified particle distributions in pp and Au+Au collisions at square root of (sNN)=200 GeV. , 2003, Physical review letters.

[38]  K. J. Foley,et al.  Multistrange baryon production in Au-Au collisions at sqrt[s(NN)]=130 GeV. , 2003, Physical review letters.

[39]  E. al.,et al.  Charged pion production in 2 to 8 agev central au+au collisions , 2003, nucl-ex/0306033.

[40]  S. Y. Kim,et al.  Production of Φ mesons in Au+Au collisions at 11.7a GeV/c , 2003, nucl-ex/0304017.

[41]  K. Bugaev,et al.  Transverse activity of kaons and deconfinement phase transition in nucleus–nucleus collisions , 2003, hep-ph/0303041.

[42]  S. Gushue,et al.  Near-threshold production of the multistrange Xi- hyperon. , 2003, Physical review letters.

[43]  E. al.,et al.  Strange antiparticle-to-particle ratios at mid-rapidity in √S NN = 130 GeV Au + Au collisions , 2002, nucl-ex/0211024.

[44]  E. al.,et al.  Energy dependence of pion and kaon production in central Pb+Pb collisions , 2002, nucl-ex/0205002.

[45]  S. Gushue,et al.  Longitudinal flow of protons from (2-8)A GeV central Au+Au collisions. , 2002, Physical review letters.

[46]  U. Mosel,et al.  Off-shell pions in Boltzmann-Uehling-Uhlenbeck transport theory ∗ , 2002, nucl-th/0202008.

[47]  S. Nehmeh,et al.  Lambda spectra in 11.6A GeV/c Au-Au collisions. , 2002, Physical review letters.

[48]  E. al.,et al.  Production and collective behavior of strange particles in Au+Au collisions at 2–8 AGeV , 2001, nucl-ex/0104025.

[49]  G. Palla,et al.  Production of φ-mesons in p+p, p+Pb and central Pb+Pb collisions at GeV , 2000 .

[50]  E. al.,et al.  An excitation function of K− and K+ production in Au+Au reactions at the AGS , 2000, nucl-ex/0008010.

[51]  C. T. Zhang,et al.  Baryon rapidity loss in relativistic Au + Au collisions. , 2000, Physical review letters.

[52]  B. Back,et al.  Excitation function of K+ and π+ production in Au + Au reactions at 2-10 AGeV , 1999 .

[53]  U. Mosel,et al.  Off-shell effects on particle production , 1999, nucl-th/9906085.

[54]  M. Gazdzicki Strangeness and pion production as signals of QCD phase transition , 1997, nucl-th/9706036.

[55]  M. Gazdzicki Entropy in nuclear collisions , 1995 .

[56]  J. Cleymans,et al.  Thermal hadron production in high energy heavy ion collisions , 1992, hep-ph/9207204.

[57]  U. Heinz,et al.  Is there a low-pT “anomaly” in the pion momentum spectra from relativistic nuclear collisions? , 1991 .

[58]  K. Bugaev,et al.  Pion multiplicity in heavy-ion collisions: possible signature of the deconfinement transition , 1991 .

[59]  D. Rischke,et al.  Unstable deltas in nuclear matter , 1990 .

[60]  Mrówczyński,et al.  Deltas in hadron gas. , 1987, Physical review. C, Nuclear physics.

[61]  H. Stöcker,et al.  Temperatures in heavy-ion collisions from pion multiplicities , 1986 .

[62]  I. Montvay,et al.  Gauge Field Thermodynamics for the SU(2) Yang-Mills System , 1982 .

[63]  J. Kapusta Asymptotic mass spectrum and thermodynamics of the Abelian bag model , 1981 .

[64]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[65]  C. Hamer,et al.  Determination of Asymptotic Parameters in the Statistical Bootstrap Model , 1971 .

[66]  Christian Iliadis,et al.  Nuclear physics of stars , 2007 .

[67]  A. Billmeier Strange and multi-strange particle ratios in p+p reactions at \sqrt{s} = 200 GeV at RHIC , 2004 .

[68]  W. Rodney,et al.  Cauldrons in the cosmos , 1988 .

[69]  H. Satz,et al.  Finite-temperature lattice QCD with Wilson fermions , 1985 .