Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations

Extending the general approach for first-order hyperbolic systems developed in [D. Appelo, T. Hagstrom, G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability, SIAM J. Appl. Math., 2006, to appear], we construct PML equations for the mixed-type system governing propagation of optical wave packets in both 1D and 2D Bragg resonant photonic waveguides with a cubic nonlinearity, i.e. the coupled mode equations. We prove that in the linear case the layer equations are absorbing and perfectly matched. We also prove they are stable for constant parameters. A number of numerical experiments are performed to assess the layer's performance in both the linear and nonlinear regimes.

[1]  Dmitry Pelinovsky,et al.  Stability Analysis of Stationary Light Transmission in Nonlinear Photonic Structures , 2003, J. Nonlinear Sci..

[2]  M. Koshiba,et al.  A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.

[3]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[4]  Thomas Hagstrom,et al.  A New Construction of Perfectly Matched Layers for Hyperbolic Systems with Applications to the Linearized Euler Equations , 2003 .

[5]  Chen,et al.  Gap solitons and the nonlinear optical response of superlattices. , 1987, Physical review letters.

[6]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[7]  N. Anders Petersson,et al.  Perfectly matched layers for Maxwell's equations in second order formulation , 2005 .

[8]  Alejandro B. Aceves,et al.  Two-dimensional gap solitons in a nonlinear periodic slab waveguide , 1995 .

[9]  Thomas Hagstrom,et al.  Automatic Symmetrization and Energy Estimates Using Local Operators for Partial Differential Equations , 2007 .

[10]  E. V. Zemlyanaya,et al.  Vibrations and Oscillatory Instabilities of Gap Solitons , 1998 .

[11]  Zhizhang Chen,et al.  Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves , 1998 .

[12]  Patrick Joly,et al.  Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .

[13]  Hong Jiang,et al.  Absorbing Boundary Conditions for the Schrödinger Equation , 1999, SIAM J. Sci. Comput..

[14]  Alejandro B. Aceves,et al.  Self-induced transparency solitons in nonlinear refractive periodic media , 1989, Annual Meeting Optical Society of America.

[15]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[16]  Neset Akozbek,et al.  Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures , 1998 .

[17]  Philip Holmes,et al.  Nonlinear Propagation of Light in One-Dimensional Periodic Structures , 2000, J. Nonlinear Sci..

[18]  An Ping Zhao,et al.  Application of the material-independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media , 1998 .

[19]  Tomáš Dohnal,et al.  Optical Soliton Bullets in (2+1)D Nonlinear Bragg Resonant Periodic Geometries , 2005 .

[20]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[21]  Richard E. Slusher,et al.  Nonlinear Photonic Crystals , 2003 .

[22]  Thomas Hagstrom,et al.  New Results on Absorbing Layers and Radiation Boundary Conditions , 2003 .

[23]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[24]  P. M. van den Berg,et al.  Absorbing boundary conditions and perfectly matched layers - an analytic time-domain performance analysis , 2002 .

[25]  Ulf Leonhardt,et al.  The perfectly matched layer in numerical simulations of nonlinear and matter waves , 2005 .

[26]  Mark Ainsworth,et al.  Topics in Computational Wave Propagation , 2003 .

[27]  Dmitry Pelinovsky,et al.  Modeling of Wave Resonances in Low-Contrast Photonic Crystals , 2005, SIAM J. Appl. Math..

[28]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[29]  Takeshi Fujisawa,et al.  Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides , 2002 .

[30]  Thomas Fevens,et al.  ABSORBING BOUNDARY CONDITIONS FOR THE SCHR ¨ ODINGER EQUATION , 1999 .