Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations

[1]  Fei Liu,et al.  Stabilized semi‐implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations , 2015 .

[2]  B. Wetton,et al.  High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..

[3]  Chun-Yu Liu,et al.  Optimality and Duality for Multiobjective Fractional Programming Involving Nonsmooth Generalized (F, b, ϕ, ͝, θ)-Univex Functions , 2013, Int. J. Math. Math. Sci..

[4]  Serafim Kalliadasis,et al.  The contact line behaviour of solid-liquid-gas diffuse-interface models , 2013, 1310.1255.

[5]  Qiang Du,et al.  Motion of Interfaces Governed by the Cahn-Hilliard Equation with Highly Disparate Diffusion Mobility , 2012, SIAM J. Appl. Math..

[6]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[7]  Glen Wheeler Surface diffusion flow near spheres , 2012, 1205.5861.

[8]  Masato Kimura,et al.  COMPUTATIONAL STUDIES OF NON-LOCAL ANISOTROPIC ALLEN-CAHN EQUATION , 2011 .

[9]  A. Berti,et al.  A mathematical model for phase separation: A generalized Cahn–Hilliard equation , 2011, 1102.1250.

[10]  M. Hjortso,et al.  Partial Differential Equations , 2010 .

[11]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[12]  Minh Do-Quang,et al.  Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface , 2010, Math. Comput. Simul..

[13]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[14]  P. Howard Spectral Analysis for Stationary Solutions of the Cahn–Hilliard Equation in ℝ d , 2010 .

[15]  Axel Voigt,et al.  The influence of electric fields on nanostructures - Simulation and control , 2010, Math. Comput. Simul..

[16]  D. Hilhorst,et al.  Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion , 2009, 0909.3503.

[17]  M. Alfaro Generation, motion and thickness of transition layers for a nonlocal Allen–Cahn equation , 2009, 0906.1330.

[18]  Jian Zhang,et al.  Numerical Studies of Discrete Approximations to the Allen--Cahn Equation in the Sharp Interface Limit , 2009, SIAM J. Sci. Comput..

[19]  Elie Bretin,et al.  A modified phase field approximation for mean curvature flow with conservation of the volume , 2009, 0904.0098.

[20]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[21]  Xiaofeng Yang,et al.  Error analysis of stabilized semi-implicit method of Allen-Cahnequation , 2009 .

[22]  P. Howard Spectral analysis of stationary solutions of the Cahn--Hilliard equation , 2009, Advances in Differential Equations.

[23]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[24]  Harald Garcke,et al.  Allen-Cahn systems with volume constraints , 2008 .

[25]  Britta Nestler,et al.  A multigrid solver for phase field simulation of microstructure evolution , 2008, Math. Comput. Simul..

[26]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[27]  Junseok Kim,et al.  A numerical method for the Cahn–Hilliard equation with a variable mobility , 2007 .

[28]  Boo Cheong Khoo,et al.  An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model , 2007, J. Comput. Phys..

[29]  Chunfeng Zhou,et al.  Spontaneous shrinkage of drops and mass conservation in phase-field simulations , 2007, J. Comput. Phys..

[30]  Peter Sternberg,et al.  Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problems , 2006 .

[31]  Akio Tomiyama,et al.  A phase-field method for interface-tracking simulation of two-phase flows , 2006, Math. Comput. Simul..

[32]  G. Caginalp,et al.  A rapidly converging phase field model , 2006 .

[33]  Amy Novick-Cohen,et al.  Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system: The partial wetting case , 2005 .

[34]  E. Carlen,et al.  Approximate Solutions of the Cahn-Hilliard Equation via Corrections to the Mullins-Sekerka Motion , 2005 .

[35]  E. Tirapegui,et al.  Coarsening dynamics of the one-dimensional Cahn-Hilliard model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  N. Alikakos,et al.  Ostwald ripening in two dimensions—the rigorous derivation of the equations from the Mullins-Sekerka dynamics , 2004 .

[37]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[38]  Patrice Pavis Generation , 2004 .

[39]  Steven J. Ruuth,et al.  A Simple Scheme for Volume-Preserving Motion by Mean Curvature , 2003, J. Sci. Comput..

[40]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[41]  U. Mayer A numerical scheme for moving boundary problems that are gradient flows for the area functional , 2000, European Journal of Applied Mathematics.

[42]  Uwe F. Mayer,et al.  Self-intersections for the surface diffusion and the volume-preserving mean curvature flow , 2000, Differential and Integral Equations.

[43]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  J. Escher,et al.  The surface diffusion flow for immersed hypersurfaces , 1998 .

[45]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[47]  L. Bronsard,et al.  Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation , 1997 .

[48]  Maria Athanassenas Volume-preserving mean curvature flow of rotationally symmetric surfaces , 1997 .

[49]  Joachim Escher,et al.  Classical solutions for Hele-Shaw models with surface tension , 1997, Advances in Differential Equations.

[50]  Michael J. Ward,et al.  Metastable Bubble Solutions for the Allen-Cahn Equation with Mass Conservation , 1996, SIAM J. Appl. Math..

[51]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[52]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[53]  Barbara Stoth,et al.  Convergence of the Cahn-Hilliard Equation to the Mullins-Sekerka Problem in Spherical Symmetry , 1996 .

[54]  Richard S. Falk,et al.  Stability of cylindrical bodies in the theory of surface diffusion , 1995 .

[55]  Fengshan Bai,et al.  Numerical computations of coarsening in the one-dimensional Cahn-Hilliard model of phase separation , 1994 .

[56]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[57]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[58]  Xinfu Chen,et al.  The Hele-Shaw problem and area-preserving curve-shortening motions , 1993 .

[59]  Gunduz Caginalp,et al.  Phase Field Models and Sharp Interface Limits: Some Differences in Subtle Situations , 1991 .

[60]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  Stephan Luckhaus,et al.  The Gibbs-Thompson relation within the gradient theory of phase transitions , 1989 .

[62]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[63]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[64]  W. Mullins Theory of Thermal Grooving , 1957 .

[65]  K. Promislow,et al.  On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method , 2013 .

[66]  A. Bertozzi,et al.  Diffuse interface surface tension models in an expanding flow , 2012, Communications in Mathematical Sciences.

[67]  Mark Willoughby High-order time-adaptive numerical methods for the Allen-Cahn and Cahn-Hilliard equations , 2011 .

[68]  J. Lowengrub,et al.  Two-phase flow in complex geometries: A diffuse domain approach. , 2010, Computer modeling in engineering & sciences : CMES.

[69]  J. Barrett,et al.  Finite element approximation of an Allen-Cahn/Cahn-Hilliard system , 2002 .

[70]  M ChooS,et al.  Cahn‐Hilliad方程式に関する保存型非線形差分スキーム‐II , 2000 .

[71]  Y. Giga,et al.  Loss of convexity of simple closed curves moved by surface diffusion , 1999 .

[72]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[73]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[74]  B. Soni,et al.  Two-sided Mullins-Sekerka flow does not preserve convexity ∗ , 1997 .

[75]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[76]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[77]  Peter Oswald,et al.  Finite element approximation , 1994 .

[78]  Christopher P. Grant SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION , 1993 .

[79]  J. Rubinstein,et al.  Nonlocal reaction−diffusion equations and nucleation , 1992 .

[80]  M. Gurtin,et al.  On the evolution of phase boundaries , 1992 .

[81]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[82]  G. Huisken The volume preserving mean curvature flow. , 1987 .

[83]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[84]  M. Gage On an area-preserving evolution equation for plane curves , 1986 .

[85]  H. Lawson Lectures On Minimal Submanifolds , 1980 .

[86]  H. Piaggio Calculus of Variations , 1954, Nature.

[87]  P. Bates,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Analysis for a Nonlocal Allen-cahn Equation , 2022 .

[88]  Hyun Geun Lee,et al.  Computers and Mathematics with Applications a Semi-analytical Fourier Spectral Method for the Allen–cahn Equation , 2022 .