Protein microarrays: prospects and problems.

[1]  T. Kodadek,et al.  A CDC6 Protein-binding Peptide Selected Using a Bacterial Two-hybrid-like System Is a Cell Cycle Inhibitor* , 2000, The Journal of Biological Chemistry.

[2]  K D Wittrup,et al.  Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[4]  I. Tomlinson,et al.  Antibody arrays for high-throughput screening of antibody–antigen interactions , 2000, Nature Biotechnology.

[5]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[6]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Eric S. Lander,et al.  Genomic analysis of metastasis reveals an essential role for RhoC , 2000, Nature.

[8]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[9]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[10]  T. Kodadek,et al.  Peptides Selected to Bind the Gal80 Repressor Are Potent Transcriptional Activation Domains in Yeast* , 2000, The Journal of Biological Chemistry.

[11]  R. Nelson,et al.  Biosensor chip mass spectrometry: A chip‐based proteomics approach , 2000, Electrophoresis.

[12]  Dustin J Maly,et al.  Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A D Ellington,et al.  In vitro selection of nucleic acids for diagnostic applications. , 2000, Journal of biotechnology.

[14]  D G Myszka,et al.  Advances in surface plasmon resonance biosensor analysis. , 2000, Current opinion in biotechnology.

[15]  P. Gallant,et al.  Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries. , 2000, Chemistry & biology.

[16]  T. Kodadek,et al.  Selection and application of peptide-binding peptides , 2000, Nature Biotechnology.

[17]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[18]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[19]  R. Brent,et al.  Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity , 1999, Oncogene.

[20]  M. Wigler,et al.  Molecular forceps from combinatorial libraries prevent the farnesylation of Ras by binding to its carboxyl terminus. , 1999, Chemistry & biology.

[21]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[22]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[23]  A G Cochran,et al.  Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. , 1998, Biochemistry.

[24]  R. Brent,et al.  An artificial cell-cycle inhibitor isolated from a combinatorial library. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[26]  A. Griffiths,et al.  Strategies for selection of antibodies by phage display. , 1998, Current opinion in biotechnology.

[27]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Barbas,et al.  Phage display of combinatorial antibody libraries. , 1997, Current opinion in biotechnology.

[29]  Christos Stathopoulos,et al.  Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines , 1997, Nature Biotechnology.

[30]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[31]  Roger Brent,et al.  Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2 , 1996, Nature.

[32]  T. Logtenberg,et al.  Leucine Zipper Dimerized Bivalent and Bispecific scFv Antibodies from a Semi-synthetic Antibody Phage Display Library (*) , 1996, The Journal of Biological Chemistry.

[33]  H. Michel,et al.  A versatile plasmid expression vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. , 1996, Gene.

[34]  A. Blanchard,et al.  High-density oligonucleotide arrays , 1996 .

[35]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[36]  S. Fields,et al.  Analyzing protein-protein interactions using two-hybrid system. , 1995, Methods in enzymology.

[37]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[38]  B. Alberts,et al.  The use of affinity chromatography to study proteins involved in bacteriophage T4 genetic recombination. , 1984, Cold Spring Harbor symposia on quantitative biology.