Ligation-dependent Cas14a1-Activated biosensor for one-pot pathogen diagnostic.

[1]  Kaixiang Zhang,et al.  G-Quadruplex DNAzyme-Substrated CRISPR/Cas12 Assay for Label-Free Detection of Single-Celled Parasitic Infection. , 2022, ACS sensors.

[2]  Magdy Mahfouz,et al.  Streamlined detection of SARS-CoV-2 via Cas13 , 2022, Nature Biomedical Engineering.

[3]  Longfei Tang,et al.  Tetrahedron supported click ligation initiated by dual recognition for precise bacterial analysis. , 2022, Biosensors & bioelectronics.

[4]  Rong Lei,et al.  RPA/CRISPR/Cas12a-Based On-Site and Rapid Nucleic Acid Detection of Toxoplasma gondii in the Environment. , 2022, ACS synthetic biology.

[5]  Chengli Zong,et al.  Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. , 2022, Biosensors & bioelectronics.

[6]  C. Klapperich,et al.  Tunable Duplex Semiquantitative Detection of Nucleic Acids with a Visual Lateral Flow Immunoassay Readout. , 2022, Analytical chemistry.

[7]  X. Le,et al.  The CRISPR-Cas toolbox for analytical and diagnostic assay development. , 2021, Chemical Society reviews.

[8]  Jinghong Li,et al.  Trans  Single-Stranded DNA Cleavage Via CRISPR/Cas14a1 Activated by Target RNA without Destruction. , 2021, Angewandte Chemie.

[9]  Y. Wan,et al.  Cas14a1-mediated nucleic acid detectifon platform for pathogens. , 2021, Biosensors & bioelectronics.

[10]  Y. Wan,et al.  Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. , 2021, Biosensors & bioelectronics.

[11]  Leifu Chang,et al.  Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease , 2021, Nucleic acids research.

[12]  Kaixiang Zhang,et al.  Detection of SARS-CoV-2 and Its Mutated Variants via CRISPR-Cas13-Based Transcription Amplification , 2021, Analytical chemistry.

[13]  G. Urban,et al.  A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. , 2021, Biosensors & bioelectronics.

[14]  H. Nishimasu,et al.  Structure of the miniature type V-F CRISPR-Cas effector enzyme. , 2020, Molecular cell.

[15]  Lingwen Zeng,et al.  An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. , 2020, Biosensors & bioelectronics.

[16]  Joshua K Young,et al.  PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage , 2020, Nucleic acids research.

[17]  D. Xing,et al.  Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction , 2020, Nature Communications.

[18]  Guozhen Liu,et al.  CRISPR/Cas Systems towards Next-Generation Biosensing. , 2019, Trends in biotechnology.

[19]  C. Gersbach,et al.  The next generation of CRISPR–Cas technologies and applications , 2019, Nature Reviews Molecular Cell Biology.

[20]  Jennifer A. Doudna,et al.  Programmed DNA destruction by miniature CRISPR-Cas14 enzymes , 2018, Science.

[21]  James J. Collins,et al.  Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 , 2018, Science.

[22]  J. Posfai,et al.  Sensitive and specific miRNA detection method using SplintR Ligase , 2016, Nucleic acids research.

[23]  C. Fan,et al.  Isothermal Amplification of Nucleic Acids. , 2015, Chemical reviews.

[24]  Jennifer A. Doudna,et al.  Conformational control of DNA target cleavage by CRISPR–Cas9 , 2015, Nature.

[25]  Bang-Ce Ye,et al.  A novel molecular beacon-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration. , 2015, Biosensors & bioelectronics.

[26]  Yan Deng,et al.  Copy Number Variation Analysis by Ligation-Dependent PCR Based on Magnetic Nanoparticles and Chemiluminescence , 2015, Theranostics.

[27]  Alison S. Devonshire,et al.  Standardization of Nucleic Acid Tests for Clinical Measurements of Bacteria and Viruses , 2014, Journal of Clinical Microbiology.

[28]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[29]  Jie Zhou,et al.  Isothermal amplified detection of DNA and RNA. , 2014, Molecular bioSystems.

[30]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[31]  Thomas C. Evans,et al.  Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase , 2013, Nucleic acids research.

[32]  D. Armbruster,et al.  Limit of blank, limit of detection and limit of quantitation. , 2008, The Clinical biochemist. Reviews.

[33]  W. Mcallister,et al.  Exposure of T7 RNA Polymerase to the Isolated Binding Region of the Promoter Allows Transcription from a Single-stranded Template* , 2003, The Journal of Biological Chemistry.