Equivalence of Linear Complementarity Problems: Theory and Application to Nonsmooth Bifurcations

Linear complementarity problems provide a powerful framework to model nonsmooth phenomena in a variety of real-world applications. In dynamical control systems, they appear coupled to a linear input-output system in the form of linear complementarity systems. Mimicking the program that led to the foundation of bifurcation theory in smooth maps, we introduce a novel notion of equivalence between linear complementarity problems that sets the basis for a theory of bifurcations in a large class of nonsmooth maps, including, but not restricted to, steadystate bifurcations in linear complementarity systems. Our definition exploits the rich geometry of linear complementarity problems and leads to constructive algebraic conditions for identifying and classifying the nonsmooth singularities associated with nonsmooth bifurcations. We thoroughly illustrate our theory on an extended applied example, the design of bistability in an electrical network, and a more theoretical one, the identification and classification of all possible equivalence classes in two-dimensional linear complementarity problems.

[1]  Vincent Acary,et al.  Nonsmooth Modeling and Simulation for Switched Circuits , 2010, Lecture Notes in Electrical Engineering.

[2]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..

[3]  Rodolphe Sepulchre,et al.  Realization of nonlinear behaviors from organizing centers , 2014, 53rd IEEE Conference on Decision and Control.

[4]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[5]  I. Getreu,et al.  Modeling the bipolar transistor , 1978 .

[6]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[7]  Alessio Franci,et al.  A notion of equivalence for linear complementarity problems with application to the design of non-smooth bifurcations , 2019, IFAC-PapersOnLine.

[8]  Naomi Ehrich Leonard,et al.  Analysis and control of agreement and disagreement opinion cascades , 2021, Swarm Intelligence.

[9]  Vaibhav Srivastava,et al.  Multiagent Decision-Making Dynamics Inspired by Honeybees , 2017, IEEE Transactions on Control of Network Systems.

[10]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[11]  Xinghuo Yu,et al.  Bifurcation Control: Theory and Applications , 2003 .

[12]  Khalid Addi,et al.  Complementarity and Variational Inequalities in Electronics , 2017 .

[13]  Fernando Castaños,et al.  Implementing robust neuromodulation in neuromorphic circuits , 2016, Neurocomputing.

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  E. Abed,et al.  Local feedback stabilization and bifurcation control, I. Hopf bifurcation , 1986 .

[16]  Rodolphe Sepulchre,et al.  Differential Dissipativity Theory for Dominance Analysis , 2017, IEEE Transactions on Automatic Control.

[17]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[18]  K. G. Murty,et al.  Complementarity problems , 2000 .

[19]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[20]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[21]  J. R. Buzeman Introduction To Boolean Algebras , 1961 .

[22]  M. Čadek Singularities and groups in bifurcation theory, volume I , 1990 .

[23]  S. Adly A Variational Approach to Nonsmooth Dynamics , 2017 .

[24]  N. Leonard,et al.  Nonlinear Opinion Dynamics With Tunable Sensitivity , 2020, IEEE Transactions on Automatic Control.

[25]  R. Danao,et al.  Q-matrices and boundedness of solutions to linear complementarity problems , 1994 .

[26]  Rodolphe Sepulchre,et al.  Dominance analysis of linear complementarity systems , 2018, ArXiv.

[27]  Bernard Brogliato,et al.  Dynamical Systems Coupled with Monotone Set-Valued Operators: Formalisms, Applications, Well-Posedness, and Stability , 2020, SIAM Rev..

[28]  R. Howe Linear Complementarity and the Degree of Mappings , 1983 .

[29]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[30]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[31]  E. Abed,et al.  Local feedback stabilization and bifurcation control, II. Stationary bifurcation , 1987 .

[32]  Rommel G. Regis,et al.  On the properties of positive spanning sets and positive bases , 2016 .

[33]  Robert D. Doverspike,et al.  Some perturbation results for the Linear Complementarity Problem , 1982, Math. Program..

[34]  Arthur J. Krener,et al.  Control bifurcations , 2004, IEEE Transactions on Automatic Control.

[35]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[36]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[37]  H. Samelson,et al.  A partition theorem for Euclidean $n$-space , 1958 .

[38]  F. J. Gould,et al.  Relations Between PL Maps, Complementary Cones, and Degree in Linear Complementarity Problems , 1983 .

[39]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[40]  Rodolphe Sepulchre,et al.  The sensitivity function of excitable feedback systems , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[41]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.