Hybrid quantum repeater for qudits

We present a "hybrid quantum repeater" protocol for the long-distance distribution of atomic entangled states beyond qubits. In our scheme, imperfect noisy entangled pairs of two qudits, i.e., two discrete-variable $d$-level systems, each of, in principle, arbitrary dimension $d$, are initially shared between the intermediate stations of the channel. This is achieved via local, sufficiently strong light-matter interactions, involving optical coherent states and their transmission after these interactions, and optical measurements on the transmitted field modes, especially (but not restricted to) efficient continuous-variable homodyne detections ("hybrid" here refers to the simultaneous exploitation of discrete and continuous variable degrees of freedom for the local processing and storage of entangled states as well as their non-local distribution, respectively). For qutrits we quantify the light-matter entanglement that can be effectively shared through an elementary lossy channel, and for a repeater spacing of up to 10 km we show that the realistic (lossy) qutrit entanglement is even larger than any ideal (loss-free) qubit entanglement. After including qudit entanglement purification and swapping procedures, we calculate the long-distance entangled-pair distribution rates and the final entangled-state fidelities for total communication distances of up to 1280 km. With three rounds of purification, entangled qudit pairs of near-unit fidelity can be distributed over 1280 km at rates of the order of, in principle, 100 Hz.

[1]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[2]  Anthony Chefles,et al.  Unambiguous discrimination between linearly independent quantum states , 1998, quant-ph/9807022.

[3]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[4]  Konrad Banaszek Optimal receiver for quantum cryptography with two coherent states , 1999 .

[5]  Peter van Loock,et al.  Ultrafast fault-tolerant long-distance quantum communication with static linear optics , 2016, 1610.04519.

[6]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[7]  N. Gisin,et al.  Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces , 2001, quant-ph/0102035.

[8]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[9]  Z. Gedik,et al.  Computational speed-up in a single qudit NMR quantum information processor , 2014, 1406.3579.

[10]  U. Andersen,et al.  Hybrid long-distance entanglement distribution protocol. , 2010, Physical review letters.

[11]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[12]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[13]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[14]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[15]  Peter van Loock,et al.  Ultrafast Long-Distance Quantum Communication with Static Linear Optics. , 2015, Physical review letters.

[16]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[17]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[18]  M. Navascués,et al.  Distillation protocols for mixed states of multilevel qubits and the quantum renormalization group , 2003 .

[19]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[20]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[21]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[22]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[23]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[24]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[25]  Takayoshi Kobayashi,et al.  Experimental violation of Bell inequalities for multi-dimensional systems , 2015, Scientific Reports.

[26]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[27]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[28]  S. Barnett,et al.  Optimal sequential measurements for bipartite state discrimination , 2017, 1704.01409.

[29]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[30]  John Calsamiglia Generalized measurements by linear elements , 2002 .

[31]  Stefano Pironio,et al.  Closing the detection loophole in Bell experiments using qudits. , 2009, Physical review letters.

[32]  P. Lam,et al.  Highly efficient optical quantum memory with long coherence time in cold atoms , 2016, 1601.04267.

[33]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[34]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[35]  W. Munro,et al.  Quantum repeaters using coherent-state communication , 2008, 0806.1153.

[36]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[37]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[38]  F. Schmidt-Kaler,et al.  A quantum repeater node with trapped ions: a realistic case example , 2015, 1508.05272.

[39]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[40]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[41]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[42]  Hyunseok Jeong,et al.  Loss-resilient photonic entanglement swapping using optical hybrid states , 2016, 1608.04882.

[43]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[44]  Peter van Loock,et al.  Hybrid quantum repeater with encoding , 2012 .

[45]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[46]  Arvind,et al.  Experimental demonstration of quantum contextuality on an NMR qutrit , 2015, 1511.00241.

[47]  S. V. Enk Unambiguous State Discrimination of Coherent States with Linear Optics: Application to Quantum Cryptography , 2002, quant-ph/0207138.

[48]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[49]  Koji Azuma,et al.  All-photonic intercity quantum key distribution , 2015, Nature Communications.

[50]  Discrimination of the Bell states of qudits by means of linear optics , 2001, quant-ph/0107119.

[51]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[52]  Akira Furusawa,et al.  Hybrid quantum information processing , 2013, 1409.3719.

[53]  Schumacher,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.