Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures

Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.

[1]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  C. Zülicke Phase Transitions in Ferroelastic and Co-Elastic Crystals , 1992 .

[4]  S. Suryanarayana,et al.  Spontaneous magnetic moment in BiFeO3–BaTiO3 solid solutions at low temperatures , 1998 .

[5]  M. Fiebig,et al.  Observation of coupled magnetic and electric domains , 2002, Nature.

[6]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[7]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[8]  W. James,et al.  The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3 , 1972 .

[9]  W. F. Peck,et al.  Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1-xCaxRuO3 (0 le x le 1). , 1992, Science.

[10]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[11]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[12]  First Principles Study of Structural, Electronic and Magnetic Interplay in Ferroelectromagnetic Yttrium Manganite , 1999, cond-mat/9910524.

[13]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[14]  Robert Gerson,et al.  The atomic structure of BiFeO3 , 1969 .

[15]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[16]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[17]  T. Kawai,et al.  Coexistence of ferroelectricity and ferromagnetism in BiFeO3–BaTiO3 thin films at room temperature , 1999 .

[18]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[21]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[22]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[23]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .