Distributed port-Hamiltonian modelling for irreversible processes

ABSTRACT Infinite-dimensional port-Hamiltonian representation of irreversible processes accounting for the thermal energy domain is presented. Two examples are studied: the transmission line and a non-isothermal reaction diffusion process. The proposed approach uses thermodynamic variables in order to define the infinite-dimensional interconnection structure linking the different phenomena. A presentation is given for one-dimensional spatial domain. For the transmission line, the Hamiltonian is the total energy and for the reaction diffusion process it is the enthalpy or the opposite of entropy.

[1]  Elena Panteley,et al.  Advanced Topics in Control Systems Theory , 2005 .

[2]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[3]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[4]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[5]  A. Schaft,et al.  Hamiltonian formulation of planar beams , 2003 .

[6]  E. Garcia-Canseco,et al.  A new passivity property of linear RLC circuits with application to power shaping stabilization , 2004, Proceedings of the 2004 American Control Conference.

[7]  Markus Schöberl,et al.  Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators , 2014, Autom..

[8]  Françoise Couenne,et al.  Structure-preserving infinite dimensional model reduction: Application to adsorption processes , 2009 .

[9]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[10]  Françoise Couenne,et al.  Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors , 2012 .

[11]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[12]  Bernhard Maschke,et al.  Structured modeling for processes: A thermodynamical network theory , 2008, Comput. Chem. Eng..

[13]  Kurt Schlacher,et al.  Mathematical modeling for nonlinear control: a Hamiltonian approach , 2008, Math. Comput. Simul..

[14]  Françoise Couenne,et al.  The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors , 2011 .

[15]  Arjan van der Schaft,et al.  Compositional modelling of distributed-parameter systems , 2005 .

[16]  Françoise Couenne,et al.  Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes , 2015 .

[17]  Stefano Stramigioli,et al.  Port-Hamiltonian approaches to motion generation for mechanical systems , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[19]  A. J. V. D. Schafta,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[20]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[21]  Kendell R. Jillson,et al.  Process networks with decentralized inventory and flow control , 2007 .

[22]  Daniel Sbarbaro,et al.  Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR , 2013 .