The algebraization of Kazhdan ’ s property ( T )

We present the surge of activity since 2005, around what we call the algebraic (as contrasted with the geometric) approach to Kazhdan’s property (T). The discussion includes also an announcement of a recent result (March 2006) regarding property (T) for linear groups over arbitrary finitely generated rings.

[1]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[2]  A. Valette Nouvelles approches de la propriété (T) de Kazhdan , 2003 .

[3]  Yuval Roichman,et al.  Expansion Properties of Cayley Graphs of the Alternating Groups , 1997, J. Comb. Theory, Ser. A.

[4]  Frederic Paulin,et al.  Simplicite de groupes d'automorphismes d'espaces a courbure negative , 1998, math/9812167.

[5]  Sergei Ivanovich Adian,et al.  On Bounded Generation of SLN(Z) , 1992, Int. J. Algebra Comput..

[6]  A. Borel,et al.  Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups , 1999 .

[7]  M. Burger,et al.  Finitely presented simple groups and products of trees , 1997 .

[8]  W. Casselman,et al.  On a $p$-adic vanishing theorem of Garland , 1974 .

[9]  Alain Valette,et al.  Kazhdan's Property (T): KAZHDAN'S PROPERTY (T) , 2008 .

[10]  Benjamin Weiss,et al.  Groups and Expanders , 1992, Expanding Graphs.

[11]  Yehuda Shalom,et al.  Expander Graphs and Amenable Quotients , 1999 .

[12]  Mu-Tao Wang Generalized harmonic maps and representations of discrete groups , 2000 .

[13]  W. V. D. Kallen SL3 (C[X]) does not have bounded word length , 1982 .

[14]  Yann Ollivier,et al.  A January 2005 invitation to random groups , 2005, Ensaios Matemáticos.

[15]  Endre Szemerédi,et al.  On sums and products of integers , 1983 .

[16]  ADDENDUM TO "RANDOM WALK ON RANDOM GROUPS" BY M. GROMOV , 2003 .

[17]  Alexander Lubotzky,et al.  Cayley graphs: eigenvalues, expanders and random walks , 1995 .

[18]  Yehuda Shalom,et al.  Harmonic analysis, cohomology, and the large-scale geometry of amenable groups , 2004 .

[19]  Almost isometric actions, property (T), and local rigidity , 2003, math/0312386.

[20]  Noga Alon,et al.  Semi-direct product in groups and zig-zag product in graphs: connections and applications , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[21]  A. Vershik,et al.  COHOMOLOGY OF GROUPS IN UNITARY REPRESENTATIONS, THE NEIGHBORHOOD OF THE IDENTITY, AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS , 1984 .

[22]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[23]  Andrei Suslin,et al.  ON THE STRUCTURE OF THE SPECIAL LINEAR GROUP OVER POLYNOMIAL RINGS , 1977 .

[24]  Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group , 2000, math/0007204.

[25]  A. Ol'shanskii ON THE NOVIKOV-ADYAN THEOREM , 1983 .

[26]  Gregory Margulis,et al.  Finitely-additive invariant measures on Euclidean spaces , 1982, Ergodic Theory and Dynamical Systems.

[27]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[28]  P. Jolissaint On property (T) for pairs of topological groups , 2005 .

[29]  S. Kumaresan On the canonicalk-types in the irreducible unitaryg-modules with non-zero relative cohomology , 1980 .

[30]  Andrzej Zuk,et al.  Property (T) and Kazhdan constants for discrete groups , 2003 .

[31]  Morris,et al.  BOUNDED GENERATION OF SL(n, A) , 2005 .

[32]  J. Bourgain On the Erdős-Volkmann and Katz-Tao ring conjectures , 2003 .

[33]  B. Rémy,et al.  Simplicité abstraite des groupes de Kac–Moody non affines , 2006 .

[34]  M. Gromov,et al.  Random walk in random groups , 2003 .

[35]  A. Pillay,et al.  Definable subgroups of algebraic groups over finite fields. , 1995 .

[36]  Marc Burger,et al.  Kazhdan constants for SL (3, Z). , 1991 .

[37]  G. Zuckerman,et al.  Unitary representations with non-zero cohomology , 1984 .

[38]  Martin Kassabov,et al.  Universal lattices and property , 2005 .

[39]  J. Lafferty,et al.  Level Spacings for Cayley Graphs , 1999 .

[40]  K. Corlette Archimedean superrigidity and hyperbolic geometry , 1992 .

[41]  László Babai,et al.  On the diameter of permutation groups , 1992, Eur. J. Comb..

[42]  Reduced 1-Cohomology of Connected Locally Compact Groups and Applications , 2006 .

[43]  Peter Sarnak,et al.  Spectra of elements in the group ring of SU(2) , 1999 .

[44]  A. O. Houcine On hyperbolic groups , 2006 .

[45]  Yehuda Shalom,et al.  Bounded generation and Kazhdan’s property (T) , 1999 .

[46]  RELATIVE KAZHDAN PROPERTY , 2005, math/0505193.

[47]  Yehuda Shalom,et al.  Expanding graphs and invariant means , 1997, Comb..

[48]  D. I. Cartwright,et al.  Groups acting simply transitively on the vertices of a building of typeÃ2, I , 1993 .

[49]  John D. Lafferty,et al.  Fast Fourier Analysis for SL2 over a Finite Field and Related Numerical Experiments , 1992, Exp. Math..

[50]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[51]  P. Pansu Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles , 1998 .

[52]  Nikolay Nikolov,et al.  A product decomposition for the classical quasisimple groups , 2005, math/0510173.

[53]  Andrei S. Rapinchuk,et al.  Algebraic groups and number theory , 1992 .

[54]  Alexander Lubotzky,et al.  Explicit constructions of Ramanujan complexes of type , 2005, Eur. J. Comb..

[55]  U. Bader,et al.  Factor and normal subgroup theorems for lattices in products of groups , 2006 .

[56]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[57]  L. Clozel Démonstration de la conjecture τ , 2003 .

[58]  A. Valette,et al.  Spaces with measured walls, the Haagerup property and property (T) , 2004, Ergodic Theory and Dynamical Systems.

[59]  S. Nayatani,et al.  Combinatorial Harmonic Maps and Discrete-group Actions on Hadamard Spaces , 2004 .

[60]  Martin Kassabov Universal lattices and unbounded rank expanders , 2005 .

[61]  Tadeusz Januszkiewicz,et al.  Cohomology of buildings and of their automorphism groups , 2002 .

[62]  O. O’Meara,et al.  The Classical Groups and K-Theory , 1989 .

[63]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[64]  A. Zuk,et al.  La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres , 1996 .

[65]  Martin Kassabov,et al.  Kazhdan Constants for Sln(Z) , 2005, Int. J. Algebra Comput..

[66]  On uniform exponential growth for linear groups , 2001, math/0108157.

[67]  Donald I. Cartwright,et al.  Property (T) and Ã2 groups , 1994 .

[68]  A. Lubotzky,et al.  Explicit constructions of Ramanujan complexes of type Ãd , 2005, Eur. J. Comb..

[69]  László Babai,et al.  Small-diameter Cayley Graphs for Finite Simple Groups , 1989, Eur. J. Comb..

[70]  Negative definite kernels and a dynamical characterization of property (T) for countable groups , 1998, Ergodic Theory and Dynamical Systems.

[71]  P. Sarnak Some Applications of Modular Forms , 1990 .

[72]  Y. C. Verdière,et al.  Spectres de graphes , 1998 .

[73]  G. Keller,et al.  BOUNDED ELEMENTARY GENERATION OF SL,n (0) , 1983 .

[74]  Kazhdan's Property (T) for the unitary group of aseparable Hilbert space , 2003 .

[75]  Howard Garland,et al.  p-Adic Curvature and the Cohomology of Discrete Subgroups of p-Adic Groups , 1973 .

[76]  W. Ballmann,et al.  On L2-cohomology and Property (T) for Automorphism Groups of Polyhedral Cell Complexes , 1997 .

[77]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[78]  Michael Vaughan-Lee,et al.  The Restricted Burnside Problem , 1990 .

[79]  S. I. Adyan,et al.  RANDOM WALKS ON FREE PERIODIC GROUPS , 1983 .

[80]  Mehrdad Shahshahani,et al.  Uniform diameter bounds for some families of Cayley graphs , 2004 .

[81]  Y. Shalom Explicit Kazhdan constants for representations of semisimple and arithmetic groups , 2000 .

[82]  John D. Lafferty,et al.  Numerical Investigation of the Spectrum for Certain Families of Cayley Graphs , 1992, Expanding Graphs.

[83]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[84]  Alex Gamburd,et al.  On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .

[85]  A. Lubotzky,et al.  Finite simple groups as expanders. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Martin Kassabov Symmetric Groups and Expanders , 2005 .

[87]  Yehuda Shalom,et al.  Rigidity of commensurators and irreducible lattices , 2000 .

[88]  Yuval Roichman,et al.  Upper bound on the characters of the symmetric groups , 1996 .

[89]  H. A. Helfgott Growth and generation in SL_2(Z/pZ) , 2005 .