A Running Controller of Humanoid Biped HRP-2LR

This article explains a control system, which stabilizes running biped robot HRP-2LR. The robot uses prescribed running pattern calculated by resolved momentum control, and a running controller stabilizes the system against disturbances. The running controller consists of posture stabilization, inverted pendulum stabilization, contact torque control, impact absorbing control, foot vertical force control and torque distribution control. Applying the proposed controller, HRP-2LR could successfully run with average speed of 0.16(m/s) repeating flight phase of 0.06 (s) and support phase of 0.3 (s).

[1]  Christine Chevallereau,et al.  Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot , 2005, Int. J. Robotics Res..

[2]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[5]  Jessica K. Hodgins,et al.  Three-dimensional human running , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[6]  Yoshihiro Kuroki,et al.  Integrated motion control for walking, jumping and running on a small bipedal entertainment robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Kazuhito Yokoi,et al.  A hop towards running humanoid biped , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Martin Buehler,et al.  The ARL monopod II running robot: control and energetics , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[10]  Friedrich Pfeiffer,et al.  Towards the design of a biped jogging robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Kazuhito Yokoi,et al.  Design of advanced leg module for humanoid robotics project of METI , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Masayuki Inaba,et al.  Design and development of research platform for perception-action integration in humanoid robot: H6 , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[13]  Shuuji Kajita,et al.  Real-time 3D walking pattern generation for a biped robot with telescopic legs , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Marc H. Raibert,et al.  Control Of A Biped Somersault In 3D , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Jun-Ho Oh,et al.  Walking control of the humanoid platform KHR-1 based on torque feedback control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.