Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling

Abstract A novel stabilized formulation for 3D compressible viscous flows on moving domains is developed. New weak imposition of essential boundary conditions and sliding-interface formulations are also proposed in the context of moving-domain compressible flows. The new formulation is successfully tested on a set of examples spanning a wide range of Reynolds and Mach numbers showing its superior robustness. Experimental validation of the new formulation is also carried out with good success. In addition, the formulation is applied to simulate flow inside a gas turbine stage, illustrating its potential to support design of real engineering systems through high-fidelity aerodynamic analysis.

[1]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[2]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[3]  T. Hughes,et al.  A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .

[4]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[5]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[6]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[7]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[8]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[9]  Yuri Bazilevs,et al.  Large-Eddy Simulation of Shallow Water Langmuir Turbulence Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method , 2012 .

[10]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[11]  Meherwan P. Boyce,et al.  Gas turbine engineering handbook , 1981 .

[12]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[13]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[14]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[15]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[16]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[17]  A. B. Bailey,et al.  Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers , 1972 .

[18]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[19]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[20]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[21]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[22]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[23]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[24]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[25]  Tayfun E. Tezduyar,et al.  A unified finite element formulation for compressible and incompressible flows using augmented conservation variables , 1998 .

[26]  T. Hughes,et al.  Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms , 1999 .

[27]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[28]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[29]  Tayfun E. Tezduyar,et al.  Finite element computation of compressible flows with the SUPG formulation , 1991 .

[30]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[31]  T. Tezduyar,et al.  Computation of inviscid compressible flows with the V‐SGS stabilization and YZβ shock‐capturing , 2007 .

[32]  Guillermo Hauke,et al.  Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .

[33]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[34]  C. Julio,et al.  Experimental Surface Pressure Data Obtained on 65-Degree Delta Wing Across Reynolds Number and Mach Number Ranges, Volume 4-Large-Radius Leading Edge , 1996 .

[35]  Arif Masud,et al.  Effects of Mesh Motion on the Stability and Convergence of ALE Based Formulations for Moving Boundary Flows , 2006 .

[36]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[37]  G. P. Wren,et al.  Parallel Implementations of a Finite Element Formulation for Fluid-Structure Interactions in Interior Flows , 1997, Parallel Comput..

[38]  Thomas J. R. Hughes,et al.  Automotive design applications of fluid flow simulation on parallel computing platforms , 2000 .

[39]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[40]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[41]  Regina C. Almeida,et al.  An adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations , 1996 .

[42]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[43]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[44]  R. M. Wood,et al.  Leeside flows over delta wings at supersonic speeds , 1984 .

[45]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[46]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[47]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[48]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[49]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of inviscid supersonic flows with YZβ shock-Capturing , 2007 .

[50]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[51]  Adarsh Krishnamurthy,et al.  Direct immersogeometric fluid flow analysis using B-rep CAD models , 2016, Comput. Aided Geom. Des..

[52]  Baskar Ganapathysubramanian,et al.  A framework for parametric design optimization using isogeometric analysis , 2017 .

[53]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[54]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[55]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[56]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[57]  Oriol Lehmkuhl Barba,et al.  Flow dynamics in the turbulent wake of a sphere at sub-critical Reynolds numbers , 2011 .

[58]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[59]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[60]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows between moving components , 1995 .

[61]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[62]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[63]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[64]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[65]  Thomas J. R. Hughes,et al.  Scalability of finite element applications on distributed-memory parallel computers , 1994 .

[66]  Thomas J. R. Hughes,et al.  Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations , 1983 .

[67]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[68]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[69]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[70]  Tayfun E. Tezduyar,et al.  Simulation of flow problems with moving mechanical components, fluid–structure interactions and two‐fluid interfaces , 1997 .

[71]  Tayfun E. Tezduyar,et al.  Fluid-object interactions in interior ballistics , 2000 .

[72]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[73]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[74]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[75]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[76]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[77]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[78]  Yuri Bazilevs,et al.  Computation of the Flow Over a Sphere at Re = 3700: A Comparison of Uniform and Turbulent Inflow Conditions , 2014 .

[79]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[80]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[81]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[82]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[83]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[84]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[85]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[86]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[87]  Thomas J. R. Hughes,et al.  An efficient communications strategy for finite element methods on the Connection Machine CM-5 system , 1994 .

[88]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[89]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[90]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[91]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[92]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[93]  Guillermo Hauke,et al.  a Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K - Model. , 1994 .

[94]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .