Convergence of knowledge, nature and computations: a review

Bio-inspired computing is just one of the branches of natural computing which also encompasses different paradigms. This review provides a brief and general overview of natural computing and incorporates comparative study of computational techniques derived from different natural phenomena including molecular and quantum computing which uses a radically different type of hardware. The bio-inspired computation is supposed to be extracted from system biology, which provides the knowledge necessary for the development of synthetic biology tools. This review describes the intertwining between system and synthetic biology. Further, a brief overview of data mining and knowledge discovery process is incorporated including different data mining tasks as well as knowledge discovery processes. Moreover, attempts have been made to justify knowledge and computation as the dual aspects of nature. In addition, inter-linking and inter-dependency of different regulatory networks, e.g., gene regulatory network, protein–protein interaction networks, and transport networks is discussed and it is emphasized that entire genomic regulatory network can be inferred as a computational system mentioned as “genomic computer”. Differences between genomic computer and traditional electronic computer have been briefly discussed. Furthermore, it is reviewed that knowledge generation can be naturalized by adopting computational model of cognition and evolutionary approach. In this naturalized approach of knowledge generation, knowledge is observed as a transformation of input data by an interactive computational process going on in the cognizing agent during the interaction with environment. How fusion of knowledge generation and nature, i.e., naturalized knowledge generation can help towards the realization of computation beyond the Turing limit has been discussed. Finally, granular aspect of information processing in natural computing is also reviewed.

[1]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[2]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[3]  D. S. Luciano,et al.  Human Physiology: The Mechanism of Body Function , 1975 .

[4]  Leandro Nunes de Castro,et al.  Recent Developments In Biologically Inspired Computing , 2004 .

[5]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[6]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 1859 .

[7]  Rodney Brooks Artificial life: From robot dreams to reality , 2000, Nature.

[8]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[9]  Ju-Jang Lee,et al.  An efficient differential evolution using speeded-up k-nearest neighbor estimator , 2014, Soft Comput..

[10]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[11]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[12]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[13]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[14]  Onami,et al.  Bio-calculus: Its Concept and Molecular Interaction. , 1999, Genome informatics. Workshop on Genome Informatics.

[15]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[16]  Gora Chand Nandi,et al.  Blood sugar regularization based evolutionary algorithm for data classification , 2012, Appl. Soft Comput..

[17]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[18]  Tony J. Dodd,et al.  Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity , 2011, Natural Computing.

[19]  K. Popper Objective Knowledge: An Evolutionary Approach , 1972 .

[20]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[21]  Evangelos Simoudis,et al.  Integrating Inductive and Deductive Reasoning for Data Mining , 1996, Advances in Knowledge Discovery and Data Mining.

[22]  Gordana Dodig-Crnkovic Knowledge Generation as Natural Computation , 2007 .

[23]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[24]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[25]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[26]  Glenn W. Rowe Theoretical Models in Biology: The Origin of Life, the Immune System, and the Brain , 1994 .

[27]  Alex Alves Freitas,et al.  Understanding the crucial differences between classification and discovery of association rules: a position paper , 2000, SKDD.

[28]  G. Flake The Computational Beauty of Nature , 1998 .

[29]  Luis von Ahn,et al.  Human computation , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[30]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[31]  Alex Alves Freitas,et al.  Mining Very Large Databases with Parallel Processing , 1997, The Kluwer International Series on Advances in Database Systems.

[32]  J. Mendel,et al.  A fundamental decomposition of type-2 fuzzy sets , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[33]  Jeff Howe,et al.  Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business , 2008, Human Resource Management International Digest.

[34]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[35]  Albert Orriols-Puig,et al.  Fuzzy knowledge representation study for incremental learning in data streams and classification problems , 2011, Soft Comput..

[36]  Adel M. Alimi,et al.  Interval Type-2 Fuzzy Logic Control of Mobile Robots , 2012 .

[37]  Yasubumi Sakakibara,et al.  Development of an In Vivo Computer Based on Escherichia coli , 2005, DNA.

[38]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[39]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[40]  Jon Timmis,et al.  Timidity: A Useful Mechanism for Robot Control? , 2003 .

[41]  Jon Timmis,et al.  Once More Unto the Breach: Towards Artificial Homeostasis? , 2005 .

[42]  M. Gell-Mann A Theory of Everything. (Book Reviews: The Quark and the Jaguar. Adventures in the Simple and the Complex.) , 1994 .

[43]  H. Maturana The tree of knowledge , 1987 .

[44]  Gheorghe Paun,et al.  Applications of Membrane Computing (Natural Computing Series) , 2005 .

[45]  D. Endy Foundations for engineering biology , 2005, Nature.

[46]  M. Bickhard The Dynamic Emergence of Representation , 2004 .

[47]  Jonathan Timmis,et al.  An interdisciplinary perspective on artificial immune systems , 2008, Evol. Intell..

[48]  Sidhartha Panda,et al.  Gravitational search algorithm for Unified Power Flow Controller based damping controller design , 2011, 2011 International Conference on Energy, Automation and Signal.

[49]  M. Hirvensalo Quantum Computing (Natural Computing Series) , 2004 .

[50]  Ron Weiss,et al.  Engineered Communications for Microbial Robotics , 2000, DNA Computing.

[51]  María José del Jesús,et al.  Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets , 2009, Int. J. Approx. Reason..

[52]  Gilford Hapanyengwi,et al.  Database management and analysis tools of machine induction , 1993, Journal of Intelligent Information Systems.

[53]  G. F. Joyce,et al.  Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. , 2006, Chemistry & biology.

[54]  Francisco Herrera,et al.  Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions , 2011, Soft Comput..

[55]  Peter Wegner,et al.  Interactive , 2021, Encyclopedia of the UN Sustainable Development Goals.

[56]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[57]  Ben Goertzel,et al.  The Evolving Mind , 1993 .

[58]  Georgi Stojanov,et al.  Structures, inner values, hierarchies and stages: essentials for developmental robot architectures , 2002 .

[59]  Grzegorz Rozenberg,et al.  Computer Science, Informatics, and Natural Computing—Personal Reflections , 2008 .

[60]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[61]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[62]  Wendy S. Ark,et al.  At What Cost Pervasive? A Social Comuting View of Mobile Computing Systems , 1999, IBM Syst. J..

[63]  Ben Goertzel Chaotic Logic: Language, Thought, and Reality from the Perspective of Complex Systems Science , 1994 .

[64]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[65]  Andrew B. Whinston,et al.  Social Computing: An Overview , 2007, Commun. Assoc. Inf. Syst..

[66]  E. Fredkin Digital mechanics: an informational process based on reversible universal cellular automata , 1990 .

[67]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[68]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[69]  Xin Chen,et al.  Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot , 2014, Soft Comput..

[70]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[71]  John von Neumann,et al.  The Computer and the Brain , 1960 .

[72]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[73]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[74]  S. Lloyd Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos , 2006 .

[75]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[76]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[77]  Eric H Davidson,et al.  The regulatory genome and the computer. , 2007, Developmental biology.

[78]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[79]  Taisir Eldos,et al.  An Efficient cell Placement using gravitational Search Algorithms , 2013, J. Comput. Sci..

[80]  Marcia J. Bates,et al.  Information and knowledge: an evolutionary framework for information science , 2005 .

[81]  M. S. Burgin Super-Recursive Algorithms (Monographs in Computer Science) , 2004 .

[82]  Jianwei Zhang,et al.  Fuzzy logic rules for mapping sensor data to robot control , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[83]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[84]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[85]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[86]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[87]  Krzysztof Jemielniak,et al.  Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling , 2014, Inf. Sci..

[88]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[89]  Bennett,et al.  Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems. , 1985, Physical review letters.

[90]  Gordana Dodig-Crnkovic Investigations into Information Semantics and Ethics of Computing , 2006 .

[91]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[92]  Chris Dobbyn,et al.  The Self as an Embedded Agent , 2003, Minds and Machines.

[93]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[94]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[95]  P. Gärdenfors How Homo Became Sapiens: On the Evolution of Thinking , 2003 .

[96]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[97]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[98]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[99]  Sankar K. Pal,et al.  Title Paper: Natural computing: A problem solving paradigm with granular information processing , 2013, Appl. Soft Comput..

[100]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[101]  L F Landweber,et al.  The evolution of cellular computing: nature's solution to a computational problem. , 1999, Bio Systems.

[102]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[103]  Luca Cardelli,et al.  Machines of Systems Biology , 2007, Bull. EATCS.

[104]  James S. Albus,et al.  A Reference Model Architecture for Design and Implementation of Intelligent Control in Large and Com , 1996 .

[105]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[106]  A. Whitehead Process and reality : an essay in cosmology , 1978 .

[107]  Q. Henry Wu,et al.  A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[108]  Florent Jacquemard,et al.  An Analysis of a Public Key Protocol with Membranes , 2005 .

[109]  David Harel,et al.  Beyond the Gene , 2007, PloS one.

[110]  R. Feynman Simulating physics with computers , 1999 .

[111]  Hamed Shah-Hosseini,et al.  Problem solving by intelligent water drops , 2007, 2007 IEEE Congress on Evolutionary Computation.

[112]  L. Adleman Computing with DNA , 1998 .

[113]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[114]  Adel M. Alimi,et al.  The geometric interval type-2 fuzzy logic approach in robotic mobile issue , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[115]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[116]  Isabelle Guyon,et al.  Discovering Informative Patterns and Data Cleaning , 1996, Advances in Knowledge Discovery and Data Mining.

[117]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[118]  Huan Liu,et al.  Book review: Machine Learning, Neural and Statistical Classification Edited by D. Michie, D.J. Spiegelhalter and C.C. Taylor (Ellis Horwood Limited, 1994) , 1996, SGAR.

[119]  Buket D. Barkana,et al.  Automatic environmental noise source classification model using fuzzy logic , 2011, Expert Syst. Appl..

[120]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[121]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[122]  G. Vichniac Simulating physics with cellular automata , 1984 .

[123]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[124]  Raymond C. Kurzweil,et al.  The Singularity Is Near , 2018, The Infinite Desire for Growth.

[125]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[126]  A. Meystel Nested hierarchical control , 1993 .

[127]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[128]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[129]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[130]  Gora Chand Nandi,et al.  TSD based framework for mining the induction rules , 2014, J. Comput. Sci..

[131]  Mark Burgin,et al.  Super-Recursive Algorithms , 2004, Monographs in Computer Science.

[132]  David J. Hand,et al.  Construction and Assessment of Classification Rules , 1997 .

[133]  Bruce J. MacLennan,et al.  Natural computation and non-Turing models of computation , 2004, Theor. Comput. Sci..

[134]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[135]  Christof Teuscher Turing's connectionism - an investigation of neural network architectures , 2002, Discrete mathematics and theoretical computer science.

[136]  Barbara Di Ventura,et al.  From in vivo to in silico biology and back , 2006, Nature.

[137]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[138]  Chao Wang,et al.  A new support vector machine based on type-2 fuzzy samples , 2013, Soft Comput..

[139]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[140]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[141]  Gerald Jay Sussman,et al.  Cellular Gate Technology , 1998 .

[142]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[143]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[144]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[145]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[146]  Hod Lipson,et al.  The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science: Automatic design and manufacture of robotic life forms , 2010 .

[147]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[148]  G. Gilbert Book Review of The computational beauty of nature: Computer explorations of fractals, chaos, complex systems and adaptation. Gary William Flake , 2000 .

[150]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[151]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[152]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[153]  Jack W. Szostak,et al.  A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP , 2004, Journal of the American Chemical Society.

[154]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[155]  T. D. Schneider,et al.  Theory of molecular machines. II. Energy dissipation from molecular machines. , 1991, Journal of theoretical biology.

[156]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[157]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[158]  Hyo-Sung Ahn,et al.  Bio-insect and artificial robot interaction: learning mechanism and experiment , 2014, Soft Comput..

[159]  Soumitra Dutta,et al.  Class-dependent rough-fuzzy granular space, dispersion index and classification , 2012, Pattern Recognit..