Dark sectors at the Fermilab SeaQuest experiment

We analyze the unique capability of the existing SeaQuest experiment at Fermilab to discover well-motivated dark sector physics by measuring displaced electron, photon, and hadron decay signals behind a compact shield. A planned installation of a refurbished electromagnetic calorimeter could provide powerful new sensitivity to GeV-scale vectors, dark Higgs bosons, scalars, axions, and inelastic and strongly interacting dark matter models. This sensitivity is both comparable and complementary to NA62, SHiP, and FASER. SeaQuest's ability to collect data now and over the next few years provides an especially exciting opportunity.

[1]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[2]  M. Pospelov,et al.  Multi-lepton Signatures of a Hidden Sector in Rare B Decays , 2009, 0911.4938.

[3]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[4]  Jonathan L. Feng,et al.  ForwArd Search ExpeRiment at the LHC , 2017, 1708.09389.

[5]  P. Schuster,et al.  Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments , 2014, 1411.1404.

[6]  W. Marciano,et al.  Implications of a light “dark Higgs” solution to the g μ − 2 discrepancy , 2015, 1511.04715.

[7]  M. Swift,et al.  MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

[8]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[9]  K. Schmidt-Hoberg,et al.  Constraints on light mediators: confronting dark matter searches with B physics , 2013, 1310.6752.

[10]  J. Blumlein,et al.  New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data , 2013, 1311.3870.

[11]  J. Chou,et al.  New Detectors to Explore the Lifetime Frontier , 2016, 1606.06298.

[12]  Roland Winston,et al.  The beam and detector of the NA62 experiment at CERN , 2017 .

[13]  H. Leutwyler,et al.  The decay of a light Higgs boson , 1990 .

[14]  V. M. Ghete,et al.  Search for exotic decays of a Higgs boson into undetectable particles and one or more photons , 2016 .

[15]  B. Shuve,et al.  Discovering Inelastic Thermal-Relic Dark Matter at Colliders , 2015, 1508.03050.

[16]  L. A. Granado Cardoso,et al.  Search for Hidden-Sector Bosons in B(0)→K(*0)μ(+)μ(-) Decays. , 2015, Physical review letters.

[17]  V. Shiltsev Fermilab Proton Accelerator Complex Status and Improvement Plans , 2017, 1705.03075.

[18]  Lian-tao Wang,et al.  Searching for the light dark gauge boson in GeV-scale experiments , 2009, 0904.1743.

[19]  M. Pospelov,et al.  Muon anomalous magnetic moment through the leptonic Higgs portal , 2016, 1606.04943.

[20]  M. Pospelov,et al.  Probing a secluded U(1) at B factories , 2009, 0903.0363.

[21]  A. Chapelain The Muon g-2 experiment at Fermilab , 2017, 1701.02807.

[22]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[23]  M. Davier,et al.  An unambiguous search for a light Higgs boson , 1989 .

[24]  M. Papucci,et al.  Constraining light dark matter with low-energy e+e− colliders , 2013, 1309.5084.

[25]  M. Pospelov,et al.  Muon Beam Experiments to Probe the Dark Sector , 2017, 1701.07437.

[26]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[27]  G. Kribs,et al.  Inelastic frontier: Discovering dark matter at high recoil energy , 2016, 1608.02662.

[28]  M. Pospelov,et al.  Observing a light dark matter beam with neutrino experiments , 2011, 1107.4580.

[29]  P. Gondolo,et al.  Neutralino relic density including coannihilations , 1997 .

[30]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[31]  Jared A. Evans,et al.  Detecting Hidden Particles with MATHUSLA , 2017, 1708.08503.

[32]  M. Oriunno,et al.  The Heavy Photon Search Test Detector , 2014, 1406.6115.

[33]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[34]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[35]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[36]  D. H. White,et al.  Dark Matter Search in a Proton Beam Dump with MiniBooNE. , 2017, Physical review letters.

[37]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[38]  S. Gninenko,et al.  Probing the muon g − 2 anomaly, L − L gauge boson and Dark Matter in dark photon experiments , 2018, Physics Letters B.

[39]  M. Pospelov,et al.  Exploring Portals to a Hidden Sector Through Fixed Targets , 2009, 0906.5614.

[40]  D. Morrissey,et al.  New limits on light hidden sectors from fixed-target experiments , 2014, 1402.4817.

[41]  D. Curtin,et al.  Illuminating dark photons with high-energy colliders , 2014, 1412.0018.

[42]  T. Mibe New g-2 experiment at J-PARC , 2010 .

[43]  Wei Xue,et al.  Proposed Inclusive Dark Photon Search at LHCb. , 2016, Physical review letters.

[44]  A. Baroncelli,et al.  Search for Axion Like Particle Production in 400-{GeV} Proton - Copper Interactions , 1985 .

[45]  W. Altmannshofer,et al.  Lepton flavor violating Z ′ explanation of the muon anomalous magnetic moment , 2016, 1607.06832.

[46]  Michael Spannowsky,et al.  Probing MeV to 90 GeV axion-like particles with LEP and LHC , 2015, 1509.00476.

[47]  D. Leith,et al.  Search for Invisible Decays of a Dark Photon Produced in e^{+}e^{-} Collisions at BaBar. , 2017, Physical review letters.

[48]  W. Altmannshofer,et al.  Neutrino trident production: a powerful probe of new physics with neutrino beams. , 2014, Physical review letters.

[49]  T. F. Martin,et al.  Search for the dark photon in π0 decays , 2015 .

[50]  M. Pospelov Secluded U(1) below the weak scale , 2008, 0811.1030.

[51]  D. Gorbunov,et al.  Decaying light particles in the SHiP experiment: Signal rate estimates for hidden photons , 2014, 1411.4007.

[52]  S. Gninenko,et al.  Muon g−2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN , 2014, 1412.1400.

[53]  A. Celentano The Heavy Photon Search experiment at Jefferson Laboratory , 2014, 1505.02025.

[54]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[55]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[56]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[57]  L. Roszkowski,et al.  Light dark Higgs boson in minimal sub-GeV dark matter scenarios , 2017, 1710.08430.

[58]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[59]  J. Wacker,et al.  Model-Independent Bounds on Kinetic Mixing , 2010, 1006.0973.

[60]  M. Liu Prospects of direct search for dark photon and dark Higgs in SeaQuest/E1067 experiment at the Fermilab main injector , 2017 .

[61]  Preema Pais,et al.  Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at √s=8 TeV with the ATLAS detector , 2015 .

[62]  C. Cheung,et al.  Kinetic mixing as the origin of a light dark-gauge-group scale , 2009, 0902.3246.

[63]  Muon g-2 , 2003, hep-ex/0309008.

[64]  C. Hearty,et al.  Revised constraints and Belle II sensitivity for visible and invisible axion-like particles , 2017, 1709.00009.

[65]  P. Schuster,et al.  Cosmology and Accelerator Tests of Strongly Interacting Dark Matter , 2018, 1801.05805.

[66]  M. Pospelov,et al.  Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP , 2016, 1609.01770.

[67]  Wei Xue,et al.  Dark photons from charm mesons at LHCb , 2015, 1509.06765.

[68]  B. Batell,et al.  Strong constraints on sub-GeV dark sectors from SLAC beam dump E137. , 2014, Physical review letters.

[69]  Felix Kling,et al.  Dark Higgs bosons at the ForwArd Search ExpeRiment , 2018 .

[70]  C. Dionisi,et al.  A precise determination of the electroweak mixing angle from semileptonic neutrino scattering , 1986 .

[71]  M. Toups,et al.  DAEδALUS and dark matter detection , 2014, 1411.1055.

[72]  Robert Foot,et al.  Phenomenology of a very light scalar (100 MeV < mh< 10 GeV) mixing with the SM Higgs , 2013, 1310.8042.

[73]  A. Tadepalli,et al.  New Prospects in Fixed Target Searches for Dark Forces with the SeaQuest Experiment at Fermilab , 2015, 1509.00050.

[74]  F. Águila,et al.  Gauge coupling renormalisation with several U(1) factors , 1988 .

[75]  F. Kahlhoefer,et al.  ALPtraum: ALP production in proton beam dump experiments , 2015, 1512.03069.

[76]  Final report of the E821 muon anomalous magnetic moment measurement at BNL , 2006, hep-ex/0602035.

[77]  Nelson,et al.  Search for neutral metastable penetrating particles produced in the SLAC beam dump. , 1988, Physical review. D, Particles and fields.

[78]  Alberto Guffanti,et al.  A facility to search for hidden particles at the CERN SPS: the SHiP physics case , 2015, Reports on progress in physics. Physical Society.

[79]  L. Randall,et al.  Do B meson decays exclude a light Higgs , 1988 .

[80]  F. Goozen,et al.  The BaBar detector , 2001 .

[81]  Y. Kahn,et al.  Testing light dark matter coannihilation with fixed-target experiments , 2017, 1703.06881.

[82]  D. H. White,et al.  The Liquid Scintillator Neutrino Detector and LAMPF Neutrino Source , 1996, nucl-ex/9605002.

[83]  Y. Tsai,et al.  Thick-Target Bremsstrahlung and Target Considerations for Secondary-Particle Production by Electrons , 1966 .

[84]  V. Gligorov,et al.  arXiv : Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb , 2017, 1708.09395.

[85]  C Bozzi,et al.  Search for Dark Photons Produced in 13 TeV pp Collisions. , 2017, Physical review letters.