Fused lasso regression for identifying differential correlations in brain connectome graphs

In this paper, we propose a procedure to find differential edges between 2 graphs from high‐dimensional data. We estimate 2 matrices of partial correlations and their differences by solving a penalized regression problem. We assume sparsity only on differences between 2 graphs, not graphs themselves. Thus, we impose an ℓ2 penalty on partial correlations and an ℓ1 penalty on their differences in the penalized regression problem. We apply the proposed procedure in finding differential functional connectivity between healthy individuals and Alzheimer's disease patients.

[1]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[2]  Kshitij Khare,et al.  Generalized Pseudolikelihood Methods for Inverse Covariance Estimation , 2016, AISTATS.

[3]  Wessel N. van Wieringen,et al.  Ridge estimation of inverse covariance matrices from high-dimensional data , 2014, Comput. Stat. Data Anal..

[4]  Guanghua Xiao,et al.  Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks. , 2015, Biostatistics.

[5]  Peter Wonka,et al.  Fused Multiple Graphical Lasso , 2012, SIAM J. Optim..

[6]  T. Cai,et al.  Direct estimation of differential networks. , 2014, Biometrika.

[7]  Su-In Lee,et al.  Node-based learning of multiple Gaussian graphical models , 2013, J. Mach. Learn. Res..

[8]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[9]  Charles J. Geyer,et al.  Ridge Fusion in Statistical Learning , 2013, ArXiv.

[10]  K. Khare,et al.  A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees , 2013, 1307.5381.

[11]  Keith Heberlein,et al.  Imaging human connectomes at the macroscale , 2013, Nature Methods.

[12]  Gaël Varoquaux,et al.  Learning and comparing functional connectomes across subjects , 2013, NeuroImage.

[13]  Hongzhe Li,et al.  Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics. , 2013, Biometrika.

[14]  Harrison H. Zhou,et al.  Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.

[15]  Seungyeop Han,et al.  Structured Learning of Gaussian Graphical Models , 2012, NIPS.

[16]  William J. Jagust,et al.  Brain imaging in the study of Alzheimer's disease , 2012, NeuroImage.

[17]  Kaustubh Supekar,et al.  Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty , 2012, NeuroImage.

[18]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[19]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[20]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[21]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[22]  J. Friedman,et al.  New Insights and Faster Computations for the Graphical Lasso , 2011 .

[23]  Ming Yuan,et al.  High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..

[24]  B. Biswal,et al.  The resting brain: unconstrained yet reliable. , 2009, Cerebral cortex.

[25]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[26]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[27]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[28]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[29]  E. Candès,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[30]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[31]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[32]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[33]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[34]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[35]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[36]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[37]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[38]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[39]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[40]  E. Yeterian,et al.  MRI-Based Topographic Parcellation of Human Cerebral White Matter and Nuclei II. Rationale and Applications with Systematics of Cerebral Connectivity , 1999, NeuroImage.

[41]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[42]  N. Makris,et al.  Gyri of the human neocortex: an MRI-based analysis of volume and variance. , 1998, Cerebral cortex.

[43]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[44]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[45]  H. Akaike A new look at the statistical model identification , 1974 .