The Global Iron Cycle

1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, 85287, USA 2Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287, USA 3Geomicrobiology, Center for Applied Geosciences, University of Tubingen, Sigwartstrasse 10, 72076, Tubingen, Germany 4Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada

[1]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[2]  A. Knoll,et al.  An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA , 2010 .

[3]  D. Lowe,et al.  Evidence for a low-O2 Archean atmosphere from nickel-rich chrome spinels in 3.24 Ga impact spherules, Barberton greenstone belt, South Africa , 2010 .

[4]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[5]  R. Kerrich,et al.  Extreme positive Ce-anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: Oxygenated marine bottom waters , 2011 .

[6]  A. Kappler,et al.  Size, density and composition of cell–mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments , 2010 .

[7]  K. Pedersen,et al.  Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea , 1990 .

[8]  A. Kappler,et al.  Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. , 2009, Environmental science & technology.

[9]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[10]  P. Cloud Paleoecological Significance of the Banded Iron-Formation , 1973 .

[11]  L. François Extensive deposition of banded iron formations was possible without photosynthesis , 1986, Nature.

[12]  C. Reinhard,et al.  Redox Redux , 2009, Geobiology.

[13]  T. Otake,et al.  Primary haematite formation in an oxygenated sea 3.46 billion years ago , 2009 .

[14]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[15]  H. Ohmoto,et al.  Biogeochemical cycling of iron in the Archean–Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons , 2005 .

[16]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[17]  A. Anbar,et al.  Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event , 2010 .

[18]  A. Anbar,et al.  The photochemistry of manganese and the origin of Banded Iron Formations. , 1992, Geochimica et cosmochimica acta.

[19]  J. Tison,et al.  Iron study during a time series in the western Weddell pack ice , 2008 .

[20]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[21]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[22]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[23]  F. Chytil,et al.  Specificity of cellular retinol-binding protein for compounds with vitamin A activity , 1975, Nature.

[24]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[25]  E. Roden Fe(III) Oxide Reactivity Toward Biological versus Chemical Reduction , 2003 .

[26]  A. Bekker,et al.  Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen , 2005 .

[27]  I. Butler,et al.  Abiotic Pyrite Formation Produces a Large Fe Isotope Fractionation , 2011, Science.

[28]  J. Grotzinger,et al.  Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life , 2009 .

[29]  A. Anbar,et al.  Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition , 2007 .

[30]  R. Hider Siderophore mediated absorption of iron , 1984 .

[31]  J. Brocks,et al.  Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants , 2008 .

[32]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[33]  M. Rosing,et al.  U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis , 2004 .

[34]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[35]  D. Johnson,et al.  Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron , 2000 .

[36]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[37]  D. Vance,et al.  Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction , 2004 .

[38]  Jacob R Waldbauer,et al.  Steroids, triterpenoids and molecular oxygen , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  R. Garrels,et al.  Genesis of Precambrian Iron-Formations and the Development of Atmospheric Oxygen , 1973 .

[40]  F. Lacan,et al.  Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle , 2011 .

[41]  A. Isley Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation , 1995, The Journal of Geology.

[42]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[43]  C. German,et al.  Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time , 2006 .

[44]  H. Bürgmann,et al.  Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos , 2009 .

[45]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[46]  A. Fallick,et al.  Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursion , 2005 .

[47]  J. Kirschvink,et al.  Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: A highly oxidizing shallow-marine environment after the last Huronian glaciation , 2011 .

[48]  R. Hocking,et al.  A review of the geology and geodynamic evolution of the Palaeoproterozoic Earaheedy Basin, Western Australia , 2009 .

[49]  A. Anbar,et al.  Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia , 2010 .

[50]  D. Abbott,et al.  Plume‐related mafic volcanism and the deposition of banded iron formation , 1999 .

[51]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[52]  E. Roden,et al.  Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron‐reducing bacterium Shewanella alga , 1998 .

[53]  A. Bekker,et al.  Late Archean euxinic conditions before the rise of atmospheric oxygen , 2011 .

[54]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[55]  W. Seyfried,et al.  Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers [rapid communication] , 2005 .

[56]  J. Hayes,et al.  Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. , 1985, Economic geology and the bulletin of the Society of Economic Geologists.

[57]  A. Ledin,et al.  Colloid dynamics and transport of major elements through a boreal river — brackish bay mixing zone , 2000 .

[58]  C. Mörth,et al.  Iron enrichments and Fe isotopic compositions of surface sediments from the Gotland Deep, Baltic Sea , 2010 .

[59]  M. Barley,et al.  Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago , 1997, Nature.

[60]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[61]  N. Dauphas,et al.  Iron and carbon isotope evidence for microbial iron respiration throughout the Archean , 2010 .

[62]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[63]  A. Anbar,et al.  Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia , 2009 .

[64]  Zhong-wei Hu Solar system abundances of the elements. , 1991 .

[65]  A. Kappler,et al.  Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. , 2008, Environmental science & technology.

[66]  G. M. Young Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate , 2002 .

[67]  F. Poitrasson,et al.  Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation , 2011 .

[68]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[69]  N. Holm The 13C12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations , 1989 .

[70]  A. Anbar,et al.  Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans , 2008 .

[71]  D. Canfield,et al.  High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog , 2010 .

[72]  Derek R. Lovley,et al.  Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) during Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens , 2000, Applied and Environmental Microbiology.

[73]  K. Weber,et al.  Anaerobic Nitrate-Dependent Iron(II) Bio-Oxidation by a Novel Lithoautotrophic Betaproteobacterium, Strain 2002 , 2006, Applied and Environmental Microbiology.

[74]  S. Jacobsen,et al.  A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans , 1988 .

[75]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[76]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[77]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[78]  K. Stetter,et al.  Thiobacillus ferrooxidans, a facultative hydrogen oxidizer , 1990, Applied and environmental microbiology.

[79]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[80]  P. Statham,et al.  Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments , 2009 .

[81]  A. Anbar,et al.  Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study , 2009 .

[82]  T. D. Yuzvinsky,et al.  Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 , 2010, Proceedings of the National Academy of Sciences.

[83]  S. Lalonde,et al.  Was There Really an Archean Phosphate Crisis? , 2007, Science.

[84]  A. Trendall The Significance of Iron‐Formation in the Precambrian Stratigraphic Record , 2009 .

[85]  P. Maurice,et al.  Siderophore Production and Iron Reduction by Pseudomonas mendocina in Response to Iron Deprivation , 2000 .

[86]  P. Berg,et al.  A Whiff of Oxygen Before the Great Oxidation Event , 2007 .

[87]  T. Murakami,et al.  Kinetics of biotite dissolution and Fe behavior under low O2 conditions and their implications for Precambrian weathering. , 2009 .

[88]  G. Luther Pyrite synthesis via polysulfide compounds , 1991 .

[89]  D. Sumner,et al.  Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis , 2009 .

[90]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[91]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[92]  A. Bekker,et al.  Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion , 2008 .

[93]  T. Murakami,et al.  Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics , 2011 .

[94]  R. Berner Sedimentary pyrite formation , 1970 .

[95]  Fleet Detrital pyrite in Witwatersrand gold reefs: X‐ray diffraction evidence and implications for atmospheric evolution , 1998 .

[96]  D. Newman,et al.  Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[97]  F. Jirsa,et al.  FACTORS INFLUENCING THE DISSOLVED IRON INPUT BY RIVER WATER TO THE OPEN OCEAN , 2005 .

[98]  W. McDonough 3.16 – Compositional Model for the Earth's Core , 2014 .

[99]  D. Canfield,et al.  Photoferrotrophs thrive in an Archean Ocean analogue , 2008, Proceedings of the National Academy of Sciences.

[100]  H. D. Holland,et al.  The Oceans; A Possible Source of Iron in Iron-Formations , 1973 .

[101]  F. Millero,et al.  Ionic interactions of divalent metals in natural waters , 1992 .

[102]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[103]  M. Arthur,et al.  Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite , 2005 .

[104]  B. Toner Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume , 2009 .

[105]  D. Newman,et al.  Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. , 2010, Geochimica et cosmochimica acta.

[106]  D. Canfield,et al.  THE EARLY HISTORY OF ATMOSPHERIC OXYGEN , 2005 .

[107]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[108]  Robert Raiswell,et al.  Iron Transport from the Continents to the Open Ocean: The Aging-Rejuvenation Cycle , 2011 .

[109]  R. Buick The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. , 1992, Science.

[110]  L. Tisa,et al.  Melanin Production and Use as a Soluble Electron Shuttle for Fe(III) Oxide Reduction and as a Terminal Electron Acceptor by Shewanella algae BrY , 2002, Applied and Environmental Microbiology.

[111]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[112]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[113]  K. Straub,et al.  Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments , 1998, Applied and Environmental Microbiology.

[114]  E. S. Cheney,et al.  Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the Lower Proterozoic sequences of southern Africa , 1992 .

[115]  R. Buick When did oxygenic photosynthesis evolve? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[116]  B. Thamdrup Bacterial Manganese and Iron Reduction in Aquatic Sediments , 2000 .

[117]  D. Newman,et al.  Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria , 2005 .

[118]  M. Schoonen,et al.  Pyrite and phosphate in anoxia and an origin-of-life hypothesis , 1999 .

[119]  H. Paerl,et al.  Identification of the Sources of Energy for Nitrogen Fixation and Physiological Characterization of Nitrogen-Fixing Members of a Marine Microbial Mat Community , 1993, Applied and environmental microbiology.

[120]  S. Jacobsen,et al.  The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations , 1990 .

[121]  Derek R. Lovley,et al.  Microbiological evidence for Fe(III) reduction on early Earth , 1998, Nature.

[122]  A. Bekker,et al.  Geological constraints on the origin of oxygenic photosynthesis , 2010, Photosynthesis Research.

[123]  C. Matocha,et al.  Nitrite Reduction by Siderite , 2008 .

[124]  R. Summons,et al.  Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis , 2008 .

[125]  I. Fairchild,et al.  Neoproterozoic glaciation in the Earth System , 2007, Journal of the Geological Society.

[126]  Wensheng Yao,et al.  The speciation of Fe(II) and Fe(III) in natural waters , 1995 .

[127]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[128]  Robert M. Hazen,et al.  Evolution of uranium and thorium minerals , 2009 .

[129]  A. Anbar,et al.  Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin , 2010 .

[130]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[131]  R. Buresh,et al.  Chemical Reduction of Nitrate by Ferrous Iron , 1976 .

[132]  K. Pedersen,et al.  Autotrophic and mixotrophic growth of Gallionella ferruginea , 1991 .

[133]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[134]  H. Hanert The Genus Gallionella , 1981 .

[135]  E. Roden,et al.  Composition and Activity of an Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture , 2009, Applied and Environmental Microbiology.

[136]  D. Newman,et al.  Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph , 2007, Proceedings of the National Academy of Sciences.

[137]  Kenneth S. Johnson,et al.  Marine Chemistry Discussion Paper What controls dissolved iron concentrations in the world ocean , 1997 .

[138]  P. Croot,et al.  Organic complexation of iron in the Southern Ocean , 2001 .

[139]  A. Jambon,et al.  The chemical composition of the Earth: Enstatite chondrite models , 2010 .

[140]  A. J. Kaufman,et al.  Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition , 2009 .

[141]  E. Roden,et al.  Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments , 2010 .

[142]  S. Taylor,et al.  Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle , 2008 .

[143]  S. Tulaczyk,et al.  Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt , 2008, Geochemical transactions.

[144]  Andrew H Knoll,et al.  Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish , 2010, Proceedings of the National Academy of Sciences.

[145]  C. Klein,et al.  Banded Iron-Formations through Much of Precambrian Time , 1981, The Journal of Geology.

[146]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[147]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[148]  Derek R. Lovley,et al.  Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis , 2002, Nature.

[149]  A. Knoll,et al.  Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia , 2010 .

[150]  K. Konhauser,et al.  Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation , 2010 .

[151]  P. Möller,et al.  Rare earth element systematics of the chemically precipitated component in early precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system , 1993 .

[152]  A. Kappler,et al.  Fe(III) mineral formation and cell encrustation by the nitrate‐dependent Fe(II)‐oxidizer strain BoFeN1 , 2005 .

[153]  M. Krom,et al.  Adsorption of phosphate in anoxic marine sediments1 , 1980 .

[154]  Maureen L. Coleman,et al.  Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes , 2010, Proceedings of the National Academy of Sciences.

[155]  J. Kramers,et al.  Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales , 2006 .

[156]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[157]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[158]  Huifang Xu,et al.  Extracellular electron transfer through microbial reduction of solid-phase humic substances , 2010 .

[159]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[160]  A. Bekker,et al.  Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater , 2009 .

[161]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[162]  N. Arndt,et al.  Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event , 2009, Nature.

[163]  A. Bekker,et al.  Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA , 2007 .

[164]  J. Xiong Photosynthesis: what color was its origin? , 2007, Genome Biology.

[165]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[166]  A. Davis,et al.  Clues from Fe Isotope Variations on the Origin of Early Archean BIFs from Greenland , 2004, Science.

[167]  A. Bekker,et al.  Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis , 2009 .

[168]  M. Coleman,et al.  Geochemistry of diagenetic non-silicate minerals: kinetic considerations , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[169]  C. German,et al.  The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes , 2007 .

[170]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[171]  P. larese-casanova,et al.  Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids , 2010 .

[172]  H. Palme 1.03 – Solar System Abundances of the Elements , 2003 .

[173]  A. Cairns-smith,et al.  Photo-oxidation of hydrated Fe2+—significance for banded iron formations , 1983, Nature.

[174]  D. Groves,et al.  Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen‐deficient atmosphere or hydrothermal alteration? , 2002 .

[175]  A. Anbar,et al.  A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents , 2009, Science.

[176]  S. Mojzsis,et al.  Identification of chemical sedimentary protoliths using iron isotopes in the > 3750 Ma Nuvvuagittuq supracrustal belt, Canada , 2007 .

[177]  K. Nealson Microbiological Oxidation and Reduction of Iron , 1982 .

[178]  J. Brocks,et al.  Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? , 2011 .

[179]  D. Langmuir Aqueous Environmental Geochemistry , 1997 .

[180]  Biqing Liang,et al.  Morphological record of oxygenic photosynthesis in conical stromatolites , 2009, Proceedings of the National Academy of Sciences.

[181]  J. Martin,et al.  First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia , 1995 .

[182]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[183]  R. C. Morris Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia , 1993 .

[184]  P. Tarits,et al.  Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data , 2009 .

[185]  P. Falkowski,et al.  The cycling and redox state of nitrogen in the Archaean ocean , 2009 .

[186]  F. C. Tan,et al.  Geology and Stable Isotope Geochemistry of the Biwabik Iron Formation, Northern Minnesota , 1973 .

[187]  H. Strauss,et al.  Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes , 2007 .

[188]  A. Knoll,et al.  An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation , 2006 .

[189]  R. Aster,et al.  Evidence and implications for a widespread magmatic shutdown for 250 My on Earth , 2009 .

[190]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[191]  J. Moffett,et al.  Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean , 2006 .

[192]  D. Lovley,et al.  Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicum , 2000, Applied and Environmental Microbiology.

[193]  Yanan Shen,et al.  Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin , 2003, Nature.

[194]  L. Croal,et al.  Phototrophic Fe(II) oxidation in an atmosphere of H2: implications for Archean banded iron formations , 2009, Geobiology.

[195]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[196]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[197]  B. Schreiber,et al.  Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: Origin and significance , 1999 .

[198]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[199]  Kentaro Nakamura,et al.  Hematite formation by oxygenated groundwater more than 2.76 billion years ago , 2009 .

[200]  T. Hofmann,et al.  Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean. , 2010, The Science of the total environment.

[201]  A. Bekker,et al.  The evolution of the marine phosphate reservoir , 2010, Nature.

[202]  J. Farquhar,et al.  Multiple sulfur isotopes and the evolution of the atmosphere , 2003 .

[203]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[204]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[205]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[206]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[207]  E. Roden,et al.  Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction , 2005 .

[208]  A. Bekker,et al.  Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event , 2011, Nature.

[209]  J. Kostka,et al.  Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms , 2002, Applied and Environmental Microbiology.

[210]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[211]  D. Newman,et al.  The pio Operon Is Essential for Phototrophic Fe(II) Oxidation in Rhodopseudomonas palustris TIE-1 , 2006, Journal of bacteriology.

[212]  Tonggang Zhang,et al.  On the coevolution of Ediacaran oceans and animals , 2008, Proceedings of the National Academy of Sciences.

[213]  Lluis Fontboté,et al.  Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF , 2011 .

[214]  J. Guigner,et al.  Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria , 2009 .

[215]  G. E. Fogg,et al.  Is the Heterocyst the Site of Nitrogen Fixation in Blue-green Algae? , 1968, Nature.

[216]  E. Roden,et al.  Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks , 2010, Geobiology.

[217]  H. Schwarz,et al.  Does a low-pH microenvironment around phototrophic Fe(II) -oxidizing bacteria prevent cell encrustation by Fe(III) minerals? , 2010, FEMS microbiology ecology.

[218]  A. J. Kaufman,et al.  Pervasive oxygenation along late Archaean ocean margins , 2010 .

[219]  W. F. Cannon,et al.  Extraterrestrial demise of banded iron formations 1.85 billion years ago , 2009 .

[220]  D. Hammond,et al.  The continental shelf benthic iron flux and its isotope composition , 2010 .

[221]  D. Sverjensky,et al.  The Great Oxidation Event and Mineral Diversification , 2010 .

[222]  A. J. Kaufman,et al.  Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry , 2007, Nature.

[223]  P. Boyd,et al.  The biogeochemical cycle of iron in the ocean , 2010 .

[224]  K. Keiding,et al.  Role of Hydrophobicity in Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga to Amorphous Fe(III) Oxide , 1997, Applied and environmental microbiology.

[225]  J. Kramers,et al.  Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary , 2008, Nature.

[226]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[227]  D. G. Adams,et al.  Role of biomineralization as an ultraviolet shield: Implications for Archean life , 2001 .

[228]  D. Johnston Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle , 2011 .

[229]  A. Ambrosini,et al.  Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism , 2010, Proceedings of the National Academy of Sciences.

[230]  D. Canfield The evolution of the Earth surface sulfur reservoir , 2004 .

[231]  A. J. Kaufman,et al.  Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation , 2008, Proceedings of the National Academy of Sciences.

[232]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[233]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[234]  J. McCarthy,et al.  Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer , 1993 .

[235]  N. Eyles,et al.  'Zipper-rift': a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma , 2004 .

[236]  Jing Huang,et al.  Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate , 2011, Journal of the Geological Society.

[237]  D. Lovley,et al.  Humic substances as electron acceptors for microbial respiration , 1996, Nature.

[238]  J. Brocks,et al.  Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation , 2008 .

[239]  D. Lundgren,et al.  STUDIES ON THE CHEMOAUTOTROPHIC IRON BACTERIUM FERROBACILLUS FERROOXIDANS II , 1959, Journal of bacteriology.

[240]  B. Schink,et al.  Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. , 2009, FEMS microbiology ecology.

[241]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[242]  A. Bekker,et al.  Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans , 2009 .

[243]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[244]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[245]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[246]  Harm Hinrich Rotermund,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and a-FeOOH , 2001 .

[247]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[248]  A. Anbar,et al.  Response to Comment on "Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans" , 2005, Science.

[249]  A. Czaja,et al.  Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼ 2.7 to 2.5 Ga Hamersley Province, Western Australia , 2010 .

[250]  A. Kappler,et al.  Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. , 2008, FEMS microbiology ecology.

[251]  A. Kappler,et al.  Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans , 2008 .

[252]  S. Wilhelm,et al.  Iron‐limited growth of cyanobacteria: Multiple siderophore production is a common response , 1994 .

[253]  A. Stefánsson Iron(III) Hydrolysis and Solubility at 25 °C , 2007 .

[254]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[255]  C. Burkhardt,et al.  Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(II)-Oxidizing Bacteria , 2009 .

[256]  D. Newman,et al.  Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[257]  K. Edwards,et al.  Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea , 2003, Applied and Environmental Microbiology.

[258]  J. Banfield,et al.  Microbial Polysaccharides Template Assembly of Nanocrystal Fibers , 2004, Science.

[259]  H. Strauss,et al.  Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa , 2008 .

[260]  E. Roden,et al.  The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth , 2008 .

[261]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[262]  A. Cairns-smith,et al.  Photo-oxidation of iron(II) in water between pH 7.5 and 4.0 , 1984 .

[263]  F. Widdel,et al.  Anaerobic, nitrate-dependent microbial oxidation of ferrous iron , 1996, Applied and Environmental Microbiology.

[264]  Linda C. Kah,et al.  Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry , 2006 .

[265]  F. W. Chandler Diagenesis of sabkha-related, sulphate nodules in the early Proterozoic Gordon Lake formation, Ontario, Canada , 1988, Carbonates and Evaporites.

[266]  JAMES C. G. Walker,et al.  Suboxic diagenesis in banded iron formations , 1984, Nature.

[267]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[268]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[269]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[270]  A. Kappler,et al.  The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations , 2005 .

[271]  M. Kennedy,et al.  The late Precambrian greening of the Earth , 2009, Nature.

[272]  A. Cairns-smith Precambrian solution photochemistry, inverse segregation, and banded iron formations , 1978, Nature.

[273]  W. Page 3 – GROWTH CONDITIONS FOR THE DEMONSTRATION OF SIDEROPHORES AND IRON-REPRESSIBLE OUTER MEMBRANE PROTEINS IN SOIL BACTERIA, WITH AN EMPHASIS ON FREE-LIVING DIAZOTROPHS , 1993 .

[274]  Richard A. Feely,et al.  Chemical and Biochemical Transformations in Hydrothermal Plumes , 2013 .

[275]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[276]  John M. Zachara,et al.  Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth , 1996 .

[277]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[278]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.