Intracellular plasma membrane guidance of Photorhabdus asymbiotica toxin is crucial for cell toxicity

The bacterial toxin Photorhabdus asymbiotica toxin (PaTox) modifies Rho proteins by tyrosine GlcNAcylation and heterotrimeric Gα proteins by deamidation. Inactivation of Rho proteins results in F‐actin disassembly in host cells. Here, we analyzed the subcellular distribution of PaTox and show that the glycosyltransferase domain of PaTox associates with the negatively charged inner surface of the plasma membrane. Localization studies with site‐directed mutants, liposome precipitation analysis, lipid overlay assays, and confocal timelapse microscopy revealed that a patch of positively charged lysine and arginine residues located on helix α1 of the glycosyltransferase is essential for membrane attachment. Using a helixl deletion mutant, we show that plasma membrane localization of PaTox is essential for cytotoxicity and proved this by substitution of helix1 by an N‐terminal myristoylation signal peptide, which restored plasma membrane localization and cytotoxicity. Furthermore, we also show that the intracellular deamidase activity of PaTox depends on the presence of the membrane localization domain. Comparison of PaTox membrane‐binding domain with the 4‐helix‐bundle membrane‐binding domain of Pasteurella multocida toxin, Vibrio cholerae multifunctional autoprocessing repeats‐in‐toxin, and clostridial glucosylating toxins revealed similar spatial geometry and charge distribution but different structural topology, indicating convergent evolution of toxin domains for optimized host target interaction.—Jank, T., Trillhaase, C., Brozda, N., Steinemann, M., Schwan, C., Süss, R., Aktories, K. Intracellular plasma membrane guidance of Photorhabdus asymbiotica toxin is crucial for cell toxicity. FASEB J. 29, 2789‐2802 (2015). www.fasebj.org

[1]  Karla J. F. Satchell,et al.  Cytotoxicity of the Vibrio vulnificus MARTX toxin Effector DUF5 is linked to the C2A Subdomain , 2014, Proteins.

[2]  Klaus Aktories,et al.  Novel bacterial ADP-ribosylating toxins: structure and function , 2014, Nature Reviews Microbiology.

[3]  H. Kalbitzer,et al.  A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins , 2013, Nature Structural &Molecular Biology.

[4]  She Chen,et al.  Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains , 2013, Nature.

[5]  Sze Ying Ong,et al.  A type III effector antagonises death receptor signalling during bacterial gut infection , 2013, Nature.

[6]  J. Galán,et al.  Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors , 2013, Nature Reviews Microbiology.

[7]  K. Aktories,et al.  Domain organization of Legionella effector SetA , 2012, Cellular microbiology.

[8]  Karla J. F. Satchell,et al.  Plasma membrane association of three classes of bacterial toxins is mediated by a basic‐hydrophobic motif , 2012, Cellular microbiology.

[9]  Keith Burridge,et al.  The 'invisible hand': regulation of RHO GTPases by RHOGDIs , 2011, Nature Reviews Molecular Cell Biology.

[10]  T. Tachibana,et al.  Enzymatic actions of Pasteurella multocida toxin detected by monoclonal antibodies recognizing the deamidated α subunit of the heterotrimeric GTPase Gq , 2011, The FEBS journal.

[11]  J. Galán,et al.  Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. , 2011, Cell host & microbe.

[12]  H. Hilbi,et al.  Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella , 2011, Front. Microbio..

[13]  L. Berthiaume,et al.  Post-translational myristoylation: Fat matters in cellular life and death. , 2011, Biochimie.

[14]  R. Goody,et al.  High‐affinity binding of phosphatidylinositol 4‐phosphate by Legionella pneumophila DrrA , 2010, EMBO reports.

[15]  Y. Horiguchi,et al.  Characterization of the Membrane-targeting C1 Domain in Pasteurella multocida Toxin* , 2010, The Journal of Biological Chemistry.

[16]  Karla J. F. Satchell,et al.  Identification of a conserved membrane localization domain within numerous large bacterial protein toxins , 2010, Proceedings of the National Academy of Sciences.

[17]  H. Mannherz,et al.  Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering , 2010, Science.

[18]  K. Aktories,et al.  Bacterial toxin and effector glycosyltransferases. , 2010, Biochimica et biophysica acta.

[19]  J. Barbieri,et al.  Toxins from bacteria. , 2010, EXS.

[20]  D. Clarke,et al.  Photorhabdus and a host of hosts. , 2009, Annual review of microbiology.

[21]  Jeff F. Miller,et al.  The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts , 2009, Cellular microbiology.

[22]  P. Escribá,et al.  Membrane interactions of G proteins and other related proteins. , 2008, Biochimica et biophysica acta.

[23]  G. Schulz,et al.  Conformational changes and reaction of clostridial glycosylating toxins. , 2008, Journal of molecular biology.

[24]  K. Aktories,et al.  Lgt: a Family of Cytotoxic Glucosyltransferases Produced by Legionella pneumophila , 2008, Journal of bacteriology.

[25]  Tony Yeung,et al.  Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization , 2008, Science.

[26]  K. Aktories,et al.  Clostridium difficile Glucosyltransferase Toxin B-essential Amino Acids for Substrate Binding* , 2007, Journal of Biological Chemistry.

[27]  Klaus Aktories,et al.  Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity* , 2007, Journal of Biological Chemistry.

[28]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[29]  Masami Miyake,et al.  Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin , 2007, Proceedings of the National Academy of Sciences.

[30]  M. Wilm,et al.  Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A , 2006, Proceedings of the National Academy of Sciences.

[31]  Mark Philips,et al.  Receptor Activation Alters Inner Surface Potential During Phagocytosis , 2006, Science.

[32]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[33]  Klaus Aktories,et al.  Bacterial cytotoxins: targeting eukaryotic switches , 2005, Nature Reviews Microbiology.

[34]  J. Ballard,et al.  Clostridium difficile Toxins: Mechanism of Action and Role in Disease , 2005, Clinical Microbiology Reviews.

[35]  B. Antonny,et al.  A Phosphatidylserine-binding Site in the Cytosolic Fragment of Clostridium sordellii Lethal Toxin Facilitates Glucosylation of Membrane-bound Rac and Is Required for Cytotoxicity* , 2004, Journal of Biological Chemistry.

[36]  R. ffrench-Constant,et al.  Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. , 2004, Microbes and infection.

[37]  I. Just,et al.  Large clostridial cytotoxins. , 2004, Reviews of physiology, biochemistry and pharmacology.

[38]  M. Yaffe,et al.  The PX domains of p47phox and p40phox bind to lipid products of PI(3)K , 2001, Nature Cell Biology.

[39]  P. Sluijs,et al.  How proteins move lipids and lipids move proteins , 2001, Nature Reviews Molecular Cell Biology.

[40]  G Waksman,et al.  The biology and enzymology of protein N-myristoylation. , 2001, The Journal of biological chemistry.

[41]  Tobias Meyer,et al.  Phosphatidylinositol 4,5-Bisphosphate Functions as a Second Messenger that Regulates Cytoskeleton–Plasma Membrane Adhesion , 2000, Cell.

[42]  M. Peel,et al.  Isolation, Identification, and Molecular Characterization of Strains of Photorhabdus luminescens from Infected Humans in Australia , 1999, Journal of Clinical Microbiology.

[43]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Tobias Meyer,et al.  Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells , 1998, Current Biology.

[45]  A. Campbell,et al.  Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors , 1997, FEBS letters.

[46]  David R. Kaplan,et al.  Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate , 1997, Science.

[47]  M. Wilm,et al.  Clostridium novyi α-Toxin-catalyzed Incorporation of GlcNAc into Rho Subfamily Proteins* , 1996, The Journal of Biological Chemistry.

[48]  D. Cussac,et al.  Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation (*) , 1996, The Journal of Biological Chemistry.

[49]  K. Aktories,et al.  Inactivation of Ras by Clostridium sordellii Lethal Toxin-catalyzed Glucosylation (*) , 1996, The Journal of Biological Chemistry.

[50]  K. Aktories,et al.  Inhibition of FcRI-mediated Activation of Rat Basophilic Leukemia Cells by Clostridium difficile Toxin B (Monoglucosyltransferase) (*) , 1996, The Journal of Biological Chemistry.

[51]  M. Wilm,et al.  The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins(*) , 1995, The Journal of Biological Chemistry.

[52]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[53]  R. Akhurst,et al.  Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens , 1989, Journal of clinical microbiology.