Comparative Study of FinFET Versus Quasi-Planar HTI MOSFET for Ultimate Scalability

The FinFET is compared against the quasi-planar trigate bulk MOSFET with high-permittivity (high- k) dielectric trench isolation (HTI MOSFET) for low-standby-power applications, at dimensions near the end-of-roadmap (11-nm half-pitch). It is found that the optimal transistor structure depends on the fin aspect ratio (AR) and the HTI dielectric constant εHTI: for sufficiently high εHTI, the HTI MOSFET can provide comparable or lower delay as the FinFET, for AR up to ~2.5. Thus, the development of high-k dielectric and/or high-AR fin formation technologies will ultimately determine which transistor design is more advantageous.

[1]  T. Liu,et al.  Dopant-Segregated Schottky Junction Tuning With Fluorine Pre-Silicidation Ion Implant , 2010, IEEE Transactions on Electron Devices.

[2]  G. Cohen,et al.  High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  T.-J.K. Liu,et al.  Three-Dimensional FinFET Source/Drain and Contact Design Optimization Study , 2009, IEEE Transactions on Electron Devices.

[4]  Guo-Neng Lu,et al.  Multigate MOSFET in a Bulk Technology by Integrating Polysilicon-Filled Trenches , 2009, IEEE Electron Device Letters.

[5]  Ming Zhu,et al.  5 nm gate length Nanowire-FETs and planar UTB-FETs with pure germanium source/drain stressors and laser-free Melt-Enhanced Dopant (MeltED) diffusion and activation technique , 2008, 2008 Symposium on VLSI Technology.

[6]  A. Toriumi,et al.  Design and demonstration of very high-k (k∼50) HfO2 for ultra-scaled Si CMOS , 2008, 2008 Symposium on VLSI Technology.

[7]  E. Simoen,et al.  Gate Influence on the Layout Sensitivity of $ \hbox{Si}_{1 - x}\hbox{Ge}_{x}\ \hbox{S/D}$ and $\hbox{Si}_{1 - y}\hbox{C}_{y}\ \hbox{S/D}$ Transistors Including an Analytical Model , 2008, IEEE Transactions on Electron Devices.

[8]  Tsu-Jae King Liu,et al.  A Comparative Study of Dopant-Segregated Schottky and Raised Source/Drain Double-Gate MOSFETs , 2008, IEEE Transactions on Electron Devices.

[9]  R.A. Vega,et al.  Low-Standby-Power Bulk MOSFET Design Using High-$k$ Trench Isolation , 2009, IEEE Electron Device Letters.

[10]  Gerard Ghibaudo,et al.  Impact of source-to-drain tunnelling on the scalability of arbitrary oriented alternative channel material nMOSFETs , 2008 .

[11]  Toshitsugu Sakamoto,et al.  Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors , 2000 .

[12]  Jin-Woo Han,et al.  Sub-5nm All-Around Gate FinFET for Ultimate Scaling , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[13]  T. Liu,et al.  The Effect of Random Dopant Fluctuation on Specific Contact Resistivity , 2010, IEEE Transactions on Electron Devices.

[14]  N. Mise,et al.  (111)-Faceted Metal Source and Drain for Aggressively Scaled Metal/High- $k$ MISFETs , 2008, IEEE Transactions on Electron Devices.

[15]  T. Liu,et al.  Dopant-Segregated Schottky Source/Drain Double-Gate MOSFET Design in the Direct Source-to-Drain Tunneling Regime , 2009, IEEE Transactions on Electron Devices.

[16]  W. Riess,et al.  Outperforming the Conventional Scaling Rules in the Quantum-Capacitance Limit , 2008, IEEE Electron Device Letters.

[17]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[18]  Chenming Hu,et al.  Sub-60-nm quasi-planar FinFETs fabricated using a simplified process , 2001, IEEE Electron Device Letters.

[19]  J. Autran,et al.  Atomic-scale modeling of source-to-drain tunneling in ultimate Schottky barrier double-gate MOSFETs , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..