Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in Al

The interactions between 60° dislocation pile-ups with grain boundaries (GBs) are studied using multiscale modeling. Careful quantitative analyses of complex processes associated with 60° dislocation absorption and transmission phenomena at Σ3, Σ9 and Σ11 symmetric tilt boundaries in Al are interpreted in terms of a set of modified Lee–Robertson–Birnbaum (MLRB) criteria. Our results and the MLRB criteria (i) explain experimental observations, (ii) rationalize new mechanisms such as deformation twinning and formation of extended stacking faults, (iii) show that reactions can be controlled more strongly by the leading partial of an incoming dislocation rather than the full Burgers vector and (iv) demonstrate that non-Schmid stresses, e.g. shear and compressive stresses along the GB, GB dislocation processes and step-height changes on the GB all influence the critical nucleation stress, but to differing degrees among different tilt boundaries. The MLRB criteria do not capture the effects of local GB structure that can also influence behavior. Quantitative metrics based on the MLRB criteria are formulated, using the simulation results, for various absorption and transmission phenomena. These metrics can be used as input into mesoscale models such as discrete dislocation plasticity, so that atomic-scale observations can inform higher-scale predictions plasticity.

[1]  E. Ma,et al.  Dislocations and twins in nanocrystalline Ni after severe plastic deformation: the effects of grain size , 2008 .

[2]  Horst Hahn,et al.  Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals , 2008 .

[3]  D. Warner,et al.  Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. , 2007, Nature materials.

[4]  William A. Curtin,et al.  Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al , 2007 .

[5]  William A. Curtin,et al.  Analysis and minimization of dislocation interactions with atomistic/continuum interfaces , 2006 .

[6]  A. Needleman,et al.  Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis , 2006 .

[7]  D. McDowell,et al.  Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces , 2005 .

[8]  Shaoxing Qu,et al.  A finite-temperature dynamic coupled atomistic/discrete dislocation method , 2005 .

[9]  M. Ortiz,et al.  Nanovoid deformation in aluminum under simple shear , 2005 .

[10]  Huajian Gao,et al.  The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation , 2005 .

[11]  B. Décamps,et al.  Interaction of dissociated lattice dislocations with a Σ=3 grain boundary in copper , 2005 .

[12]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[13]  W. Curtin,et al.  Multiscale Modeling of Dislocation/Grain Boundary Interactions , 2004 .

[14]  William A. Curtin,et al.  A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .

[15]  B. Décamps,et al.  On the interactions between dislocations and a near-Σ=3 grain boundary in a low stacking-fault energy metal , 2003 .

[16]  W. Cai,et al.  Modeling of dislocation-grain boundary interactions in FCC metals , 2003 .

[17]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[18]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[19]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[20]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[21]  F. Inoko,et al.  Effect of piled-up dislocations on strain induced boundary migration (SIBM) in deformed aluminum bicrystals with originally ∑3 twin boundary , 2001 .

[22]  R. Phillips,et al.  Lattice resistance and Peierls stress in finite size atomistic dislocation simulations , 2000, cond-mat/0010503.

[23]  B. Décamps,et al.  In-situ transmission electron microscopy study of the dislocation accommodation in [101] tilt grain boundaries in nickel bicrystals , 1999 .

[24]  A. Serra,et al.  Dislocations in interfaces in the h.c.p. metals—I. Defects formed by absorption of crystal dislocations , 1999 .

[25]  B. Décamps,et al.  Weak-beam transmission electron microscopy study of dislocation accommodation processes in nickel Σ = 3 grain boundaries , 1998 .

[26]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[27]  K. Schwarz,et al.  INTERACTION OF DISLOCATIONS ON CROSSED GLIDE PLANES IN A STRAINED EPITAXIAL LAYER , 1997 .

[28]  D. Seidman,et al.  〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies , 1996 .

[29]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[30]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[31]  J. B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[32]  L. P. Kubin,et al.  The modelling of dislocation patterns , 1992 .

[33]  J. Hosson,et al.  Interaction between lattice dislocations and grain boundaries in f.c.c. and ordered compounds: A computer simulation , 1991 .

[34]  Ian M. Robertson,et al.  AnIn Situ transmission electron microscope deformation study of the slip transfer mechanisms in metals , 1990 .

[35]  J. Hosson,et al.  Interaction between Lattice Dislocations and Grain Boundaries in f.c.c. Materials , 1989 .

[36]  Ian M. Robertson,et al.  Prediction of slip transfer mechanisms across grain boundaries , 1989 .

[37]  R. H. Wagoner,et al.  Dislocation and grain boundary interactions in metals , 1988 .

[38]  R. H. Wagoner,et al.  Dislocation pile-up and grain boundary interactions in 304 stainless steel , 1986 .

[39]  R. Raj,et al.  Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K , 1985 .

[40]  V. Vítek,et al.  On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  D. Dingley,et al.  On the interaction of crystal dislocations with grain boundaries , 1979 .

[42]  R. Balluffi,et al.  On the interaction of lattice dislocations with grain boundaries , 1978 .

[43]  R. Pond,et al.  On the absorption of dislocations by grain boundaries , 1977 .

[44]  H. Grimmer,et al.  Coincidence-site lattices and complete pattern-shift in cubic crystals , 1974 .

[45]  R. Fleischer,et al.  Cross slip of extended dislocations , 1959 .

[46]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[47]  William A. Curtin,et al.  Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al , 2006 .

[48]  N. A. Flecka,et al.  A reformulation of strain gradient plasticity , 2001 .

[49]  M. Duesbery Dislocation motion, constriction and cross-slip in fcc metals , 1998 .

[50]  E van der Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[51]  Ian M. Robertson,et al.  TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals , 1990 .

[52]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[53]  V. Vítek,et al.  On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.