The constituent equations of piezoelectric bimorphs

The constituent equations that describe the behavior of piezoelectric bimorphs for various mechanical boundary conditions are derived. The internal energy density of infinitesimally small volume elements in thermodynamic equilibrium is calculated in the presence of a voltage on the electrodes, a clamped cantilever condition on one side of the beam, and a set of three different classical boundary conditions on the other side of the beam: a mechanical moment M at the end of the beam, a force F perpendicular to the beam, applied at its tip, and a body force p. The total internal energy content is calculated by integrating over the entire volume of the beam. The canonical conjugate of the moment is calculated as the angular deflection at the tip of the beam, while that of the force at the tip is the local vertical deflection. The canonical conjugate of the uniform load on the beam proves to be the volume displacement V of the beam. The equations are given in the direct form, with internal parameters (M,V), (F,V), and (p,V) as independent variables.<<ETX>>

[1]  D. Peters,et al.  Piezoelectric bimorph‐based translation device for two‐dimensional, remote micropositioning , 1989 .

[2]  V. Schmidt,et al.  PVF2 bimorphs as active elements in wind generators , 1983 .

[3]  Michael A. Marcus,et al.  The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures , 1981 .

[4]  Jan G. Smits Is micromechanics becoming a new subject for academic courses, or the design of a piezoelectric on silicon microrobot , 1989, Proceedings., Eighth University/Government/Industry Microelectronics Symposium.

[5]  H. S. Tzou,et al.  A multi-purpose dynamic and tactile sensor for robot manipulators , 1987, J. Field Robotics.

[6]  M. D. Bryant,et al.  A characterization of the linear and non-linear dynamic performance of a practical piezoelectric actuator part 1: Measurements , 1986 .

[7]  C. P. Germano Flexure Mode Piezoelectric Transducers , 1971 .

[8]  M. Kurosawa,et al.  Ultrasonic motors , 1988, IEEE 1988 Ultrasonics Symposium Proceedings..

[9]  E. Crawley,et al.  Detailed Models of Piezoceramic Actuation of Beams , 1989 .

[10]  Hiroyuki Matsunami,et al.  Preparation and properties of ferroelectric PLZT thin films by rf sputtering , 1977 .

[11]  Horn-Sen Tzou,et al.  Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls , 1989 .

[12]  M. Fleischer,et al.  New type of piezoelectric ultrasonic motor , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  R. Nickell,et al.  Analysis of structural-acoustic interactions in metal-ceramic transducers , 1973 .

[14]  Anthony Dandridge,et al.  Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. , 1980, Applied optics.

[15]  C. P. Germano,et al.  Flexure Mode Piezoelectric Transducers , 1971 .

[16]  M. F. Barsky,et al.  Robot gripper control system using PVDF piezoelectric sensors , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Edward G. Thurston The Theoretical Sensitivity of Three Types of Rectangular Bimorph Transducers , 1953 .

[18]  Minoru Toda,et al.  Elastic properties of piezoelectric PVF2 , 1980 .

[19]  D. Keuning Approximate equations for the flexure of thin, incomplete, piezoelectric bimorphs , 1971 .

[20]  Richard S. Muller,et al.  Integrated silicon pi-fet accelerometer with proof mass , 1984 .

[21]  H. Tzou,et al.  Active vibration isolation by polymeric piezoelectret with variable feedback gains , 1988 .

[22]  S. Kokorowski Analysis of adaptive optical elements made from piezolectric bimorphs , 1979 .

[23]  A. L. Wicks,et al.  Measuring simultaneously translational and angular acceleration with the new translational-angular-piezobeam (TAP) system , 1990 .

[24]  S. Waltman,et al.  A micromachined silicon electron tunneling sensor , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[25]  H. Meixner,et al.  Ultrasonic piezomotor with longitudinally oscillating amplitude-transforming resonator , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Donald Ricketts,et al.  The frequency of flexural vibration of completely free composite piezoelectric polymer plates , 1986 .

[27]  P Muralt,et al.  Wide-range, low-operating-voltage, bimorph STM: Application as potentiometer , 1986, IBM J. Res. Dev..

[28]  P. G. Harper,et al.  The piezoelectric bimorph: An experimental and theoretical study of its quasistatic response , 1978 .

[29]  J. Moreland,et al.  Problems with cryogenic operation of piezoelectric bending elements , 1986 .

[30]  R. Anderson,et al.  Piezoelectricity in polymers , 1980 .

[31]  Harrie A.C. Tilmans,et al.  Resonant diaphragm pressure measurement system with ZnO on Si excitation , 1983 .

[32]  J. G. Smits Piezoelectric micropump with microvalves , 1989, Proceedings., Eighth University/Government/Industry Microelectronics Symposium.

[33]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[34]  B. D. Shafer,et al.  An electronically controlled piezoelectric insulin pump and valves , 1978, IEEE Transactions on Sonics and Ultrasonics.

[35]  G. Gladwell,et al.  Finite Element Analysis of Flexure-Type Vibrators with Electrostrictive Transducers , 1970, IEEE Transactions on Sonics and Ultrasonics.

[36]  B. Kowalski,et al.  Chemical piezoelectric sensor and sensor array characterization , 1986 .

[37]  M. Royer,et al.  ZnO on Si integrated acoustic sensor , 1983 .

[38]  A. Kumada,et al.  A Piezoelectric Ultrasonic Motor , 1985 .