Fitting the psychometric function

A constrained generalized maximum likelihood routine for fitting psychometric functions is proposed, which determines optimum values for the complete parameter set—that is, threshold and slopeas well as for guessing and lapsing probability. The constraints are realized by Bayesian prior distributions for each of these parameters. The fit itself results from maximizing the posterior distribution of the parameter values by a multidimensional simplex method. We present results from extensive Monte Carlo simulations by which we can approximate bias and variability of the estimated parameters of simulated psychometric functions. Furthermore, we have tested the routine with data gathered in real sessions of psychophysical experimenting.

[1]  Gustav Theodor Fechner,et al.  Revision der Hauptpuncte der Psychophysik , 1882 .

[2]  T. Marill Detection theory and psychophysics , 1956 .

[3]  G. B. Wetherill,et al.  Sequential Estimation of Quantal Response Curves , 1963 .

[4]  J. F. Corso,et al.  A theoretico-historical review of the threshold concept. , 1963, Psychological bulletin.

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[7]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[8]  J. L. Hall Maximum‐Likelihood Sequential Procedure for Estimation of Psychometric Functions , 1968 .

[9]  David R. Cox The analysis of binary data , 1970 .

[10]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[11]  J. Dennis,et al.  Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation , 1971 .

[12]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[13]  A. Watson Probability summation over time , 1979, Vision Research.

[14]  Jacob Nachmias,et al.  On the psychometric function for contrast detection , 1981, Vision Research.

[15]  Alex Pentland,et al.  Microcomputer-based estimation of psychophysical thresholds: The Best PEST , 1982 .

[16]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[17]  S. McKee,et al.  Statistical properties of forced-choice psychometric functions: Implications of probit analysis , 1985, Perception & psychophysics.

[18]  R. Hambleton,et al.  Item Response Theory , 1984, The History of Educational Measurement.

[19]  P L Emerson A quadrature method for Bayesian sequential threshold estimation , 1986, Perception & psychophysics.

[20]  Lewis O. Harvey,et al.  Efficient estimation of sensory thresholds , 1986 .

[21]  R. Madigan,et al.  Maximum-likelihood psychometric procedures in two-alternative forced-choice: Evaluation and recommendations , 1987, Perception & psychophysics.

[22]  R. Fletcher Practical Methods of Optimization , 1988 .

[23]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[24]  J. O'Regan,et al.  Estimating psychometric functions in forced-choice situations: Significant biases found in threshold and slope estimations when small samples are used , 1989, Perception & psychophysics.

[25]  R. Hambleton Principles and selected applications of item response theory. , 1989 .

[26]  M. Appelbaum,et al.  Psychometric methods. , 1989, Annual review of psychology.

[27]  R. Linn Educational measurement, 3rd ed. , 1989 .

[28]  Theodor Landis,et al.  A ‘sheep‐goat effect’ in repetition avoidance: Extra‐sensory perception as an effect of subjective probability? , 1990 .

[29]  D. M. Green,et al.  Stimulus selection in adaptive psychophysical procedures. , 1990, The Journal of the Acoustical Society of America.

[30]  C Kaernbach,et al.  Simple adaptive testing with the weighted up-down method , 1991, Perception & psychophysics.

[31]  W. Swanson,et al.  Extracting thresholds from noisy psychophysical data , 1992, Perception & psychophysics.

[32]  Jens G. Reich C curve fitting and modeling for scientists and engineers , 1992 .

[33]  I. Rentschler,et al.  Double pulse resolution in the visual field: the influence of temporal stimulus characteristics , 1992 .

[34]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[35]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[36]  D. Collett,et al.  Modelling Binary Data , 1991 .

[37]  D. M. Green,et al.  A maximum-likelihood method for estimating thresholds in a yes-no task. , 1993, The Journal of the Acoustical Society of America.

[38]  Bernard Delyon,et al.  Accelerated Stochastic Approximation , 1993, SIAM J. Optim..

[39]  P. King-Smith,et al.  Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation , 1994, Vision Research.

[40]  S. Crawford,et al.  Analysis of Quantal Response Data , 1994 .

[41]  B. Treutwein Adaptive psychophysical procedures , 1995, Vision Research.

[42]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[43]  P. King-Smith,et al.  Principles of an Adaptive Method for Measuring the Slope of the Psychometric Function , 1997, Vision Research.

[44]  B Treutwein,et al.  YAAP: yet another adaptive procedure. , 1997, Spatial vision.

[45]  L. O. Harvey,et al.  Efficient estimation of sensory thresholds with ML-PEST. , 1997, Spatial vision.

[46]  M. García-Pérez Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties , 1998, Vision Research.