Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa

[1]  Aaron Marc Saunders,et al.  The environmental occurrence of Pseudomonas aeruginosa , 2019, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[2]  MurthySudhir,et al.  Nitric Oxide Production Interferes with Aqueous Dissolved Oxygen Sensors , 2017 .

[3]  Jonathan L. Robinson,et al.  An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. , 2017, Metabolic engineering.

[4]  A. Oliver,et al.  Antibiotic treatment of biofilm infections , 2017, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[5]  N. Høiby,et al.  Biofilms and host response – helpful or harmful , 2017, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[6]  Elizabeth M. Boon,et al.  Discovery of a Novel Nitric Oxide Binding Protein and Nitric-Oxide-Responsive Signaling Pathway in Pseudomonas aeruginosa , 2017, ACS infectious diseases.

[7]  J. Drewes,et al.  Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems , 2016, Applied and Environmental Microbiology.

[8]  Jonathan L. Robinson,et al.  Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli , 2016, Proceedings of the National Academy of Sciences.

[9]  K. Timmis,et al.  Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus , 2016, Journal of bacteriology.

[10]  F. Cutruzzolà,et al.  Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms , 2015, Journal of bacteriology.

[11]  Elizabeth M. Boon,et al.  Nitric Oxide Regulation of Bacterial Biofilms. , 2015, Biochemistry.

[12]  M. Kühl,et al.  Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum , 2014, Front. Microbiol..

[13]  M. Toyofuku,et al.  cbb3-Type Cytochrome c Oxidases, Aerobic Respiratory Enzymes, Impact the Anaerobic Life of Pseudomonas aeruginosa PAO1 , 2014, Journal of bacteriology.

[14]  T. Scheike,et al.  Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients , 2014, Infection and Immunity.

[15]  C. Hansen,et al.  Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen , 2014, Clinical and experimental immunology.

[16]  R. Bonnecaze,et al.  Oxygen Limitation within a Bacterial Aggregate , 2014, mBio.

[17]  A. Kharazmi,et al.  Nitrous Oxide Production in Sputum from Cystic Fibrosis Patients with Chronic Pseudomonas aeruginosa Lung Infection , 2014, PloS one.

[18]  M. Strous,et al.  Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. , 2013, Biochimica et biophysica acta.

[19]  Ming L. Wu,et al.  Bacterial oxygen production in the dark , 2012, Front. Microbio..

[20]  F. Cutruzzolà,et al.  The catalytic mechanism of Pseudomonas aeruginosa cd1 nitrite reductase. , 2011, Biochemical Society transactions.

[21]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in cystic fibrosis. , 2010, Future microbiology.

[22]  D. Jahn,et al.  Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.

[23]  D. Hassett,et al.  Sodium Nitrite-Mediated Killing of the Major Cystic Fibrosis Pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under Anaerobic Planktonic and Biofilm Conditions , 2010, Antimicrobial Agents and Chemotherapy.

[24]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[25]  M. Ishii,et al.  Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[26]  J. Buer,et al.  Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. , 2009, Environmental microbiology.

[27]  A. Kharazmi,et al.  Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis , 2009, Thorax.

[28]  D. Hassett,et al.  Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal , 2009, Journal of bacteriology.

[29]  F. Cutruzzolà,et al.  The transcription factor DNR from Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. , 2009, Microbiology.

[30]  A. Stams,et al.  Purification and characterization of a chlorite dismutase from Pseudomonas chloritidismutans. , 2009, FEMS microbiology letters.

[31]  D. Hassett,et al.  Two‐pronged survival strategy for the major cystic fibrosis pathogen, Pseudomonas aeruginosa, lacking the capacity to degrade nitric oxide during anaerobic respiration , 2007, The EMBO journal.

[32]  C. Harwood,et al.  Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration , 2007, Molecular microbiology.

[33]  James C Liao,et al.  Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[34]  D. Jahn,et al.  The Anaerobic Regulatory Network Required for Pseudomonas aeruginosa Nitrate Respiration , 2007, Journal of bacteriology.

[35]  D. Hassett,et al.  Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. , 2006, The Journal of clinical investigation.

[36]  C. Cooper,et al.  Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Haidaris,et al.  Effect of Anaerobiosis and Nitrate on Gene Expression in Pseudomonas aeruginosa , 2005, Infection and Immunity.

[38]  L. Philippot Denitrification in pathogenic bacteria: for better or worst? , 2005, Trends in microbiology.

[39]  Satoshi Takahashi,et al.  NO Reduction by Nitric-oxide Reductase from Denitrifying Bacterium Pseudomonas aeruginosa , 2004, Journal of Biological Chemistry.

[40]  T. Nakae,et al.  Enhancement of the mexAB-oprM Efflux Pump Expression by a Quorum-Sensing Autoinducer and Its Cancellation by a Regulator, MexT, of the mexEF-oprN Efflux Pump Operon in Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[41]  L. Ju,et al.  Aerobic Denitrification of Pseudomonas aeruginosa Monitored by Online NAD(P)H Fluorescence , 2003, Applied and Environmental Microbiology.

[42]  P. R. Gardner,et al.  Flavohemoglobin Detoxifies Nitric Oxide in Aerobic, but Not Anaerobic, Escherichia coli , 2002, The Journal of Biological Chemistry.

[43]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[44]  M. Grisham,et al.  Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum , 2000, Pediatric pulmonology.

[45]  M. N. Hughes,et al.  New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress , 2000, Molecular microbiology.

[46]  D. Hassett,et al.  Bacterioferritin A Modulates Catalase A (KatA) Activity and Resistance to Hydrogen Peroxide in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[47]  H. Grasemann Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. , 1999, American journal of respiratory and critical care medicine.

[48]  P. R. Gardner,et al.  Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  B. Rubin,et al.  Nitric oxide metabolites in cystic fibrosis lung disease , 1998, Archives of disease in childhood.

[50]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[51]  Y. Igarashi,et al.  Cascade regulation of the two CRP/FNR‐related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa , 1997, Molecular microbiology.

[52]  S. Kengen,et al.  Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme , 1996, Archives of Microbiology.

[53]  R. Radi Reactions of nitric oxide with metalloproteins. , 1996, Chemical research in toxicology.

[54]  D. Wink,et al.  New nitric oxide-releasing zwitterions derived from polyamines , 1993 .

[55]  K. Timmis,et al.  A general system to integratelacZ fusions into the chromosomes of gram-negative eubacteria: regulation of thePm promoter of theTOL plasmid studied with all controlling elements in monocopy , 1992, Molecular and General Genetics MGG.

[56]  B. Holloway,et al.  Chromosomal genetics of Pseudomonas. , 1979, Microbiological reviews.

[57]  P. Jurtshuk,et al.  Bacterial terminal oxidases. , 1975, CRC critical reviews in microbiology.

[58]  M. Givskov,et al.  Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. , 2014, Advances in applied microbiology.

[59]  M. Marletta Nitric Oxide Signaling , 2013 .

[60]  R. Poole,et al.  The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. , 2011, Advances in microbial physiology.

[61]  G. Garcı́a-Cardeña,et al.  Bacterial infection induces nitric oxide synthase in human neutrophils. , 1997, The Journal of clinical investigation.

[62]  K. M. Davies,et al.  "NONOates" (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. , 1996, Methods in enzymology.

[63]  A. Pühler,et al.  Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. , 1986, Methods in enzymology.