Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines
暂无分享,去创建一个
[1] Serge Dubuc,et al. Spline functions and the theory of wavelets , 1999 .
[2] L. Schumaker,et al. Data fitting by penalized least squares , 1990 .
[3] Paul Dierckx,et al. Curve and surface fitting with splines , 1994, Monographs on numerical analysis.
[4] John E. Lavery,et al. Shape-preserving, multiscale interpolation by bi- and multivariate cubic L1 splines , 2001, Comput. Aided Geom. Des..
[5] M. G. Cox,et al. The fitting of extremely large data sets by bivariate splines , 1987 .
[6] R. Meyling,et al. Approximation by cubic C 1 -splines on arbitrary triangulations , 1987 .
[7] R. E. Carlson,et al. Sparse approximate multiquadric interpolation , 1994 .
[8] L. Schumaker,et al. Fitting Monotone Surfaces to Scattered Data Using C 1 Piecewise Cubics , 1997 .
[9] David E. Gilsinn. Constructing Sibson Elements for a Rectangular Mesh , 2001 .
[10] Richard Franke,et al. Knot Selection for Least Squares Thin Plate Splines , 1992, SIAM J. Sci. Comput..
[11] Paul Dierckx,et al. Surface fitting using convex Powell-Sabin splines , 1994 .
[12] G. Wahba. Spline models for observational data , 1990 .
[13] John E. Lavery. Univariate cubic Lp splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines , 2000, Comput. Aided Geom. Des..
[14] Robert J. Vanderbei,et al. Affine-scaling for linear programs with free variables , 1989, Math. Program..