Syntheses of five new layered quaternary chalcogenides SrScCuSe3, SrScCuTe3, BaScCuSe3, BaScCuTe3, and BaScAgTe3: crystal structures, thermoelectric properties, and electronic structures

Five new layered transition metal-based chalcogenides (SrScCuSe3, SrScCuTe3, BaScCuSe3, BaScCuTe3, and BaScAgTe3) were discovered by the exploratory solid-state method.

[1]  J. Prakash,et al.  Ba2Ln1-xMn2Te5 (Ln = Pr, Gd, and Yb; x = Ln vacancy): syntheses, crystal structures, optical, resistivity, and electronic structure. , 2021, Dalton Transactions.

[2]  K. Kovnir,et al.  Crystal Structure and Properties of Layered Pnictides BaCuSi2Pn3 (Pn = P, As). , 2021, Inorganic chemistry.

[3]  J. Prakash,et al.  Syntheses, crystal structures, optical, and theoretical study of two ternary chalcogenides CsSc5Te8 and Cs0.6(1)Ti6Se8 with tunnel structures , 2021 .

[4]  C. D. de Matos,et al.  Nonlinear Optical Interactions and Relaxation in 2D Layered Transition Metal Dichalcogenides Probed by Optical and Photoacoustic Z-Scan Methods , 2020 .

[5]  C. Wolverton,et al.  Unraveling the Structure-Valence-Property Relationships in AMM′Q3 Chalcogenides with Promising Thermoelectric Performance , 2020 .

[6]  G. D. Ilyushin Intermetallic Compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and Topological Analysis, Tetrahedral Cluster Precursors, and Self-Assembly of Crystal Structures , 2020, Crystallography Reports.

[7]  J. Prakash,et al.  Modulated Linear Tellurium Chains in Ba3ScTe5: Synthesis, Crystal Structure, Optical and Resistivity Studies, and Electronic Structure. , 2020, Inorganic chemistry.

[8]  U. Waghmare,et al.  Ultralow Thermal Conductivity in Chain Like TlSe due to Inherent Tl+ Rattling. , 2019, Journal of the American Chemical Society.

[9]  J. Prakash,et al.  Intrinsic extremely low thermal conductivity in BaIn2Te4: Synthesis, crystal structure, Raman spectroscopy, optical, and thermoelectric properties , 2019, Journal of Alloys and Compounds.

[10]  G. J. Snyder,et al.  The Thermoelectric Properties of Bismuth Telluride , 2019, Advanced Electronic Materials.

[11]  U. Waghmare,et al.  Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3† †Electronic supplementary information (ESI) available: Contains the method of refinement of PDF (Fig. S1), figures containing different uni , 2019, Chemical science.

[12]  Logan T. Ward,et al.  Design Strategy for High-Performance Thermoelectric Materials: The Prediction of Electron-Doped KZrCuSe3 , 2019, Chemistry of Materials.

[13]  A. Mar,et al.  SrCdGeS4 and SrCdGeSe4: Promising Infrared Nonlinear Optical Materials with Congruent-Melting Behavior , 2019, Crystal Growth & Design.

[14]  Zhihua Yang,et al.  Effect of Element Substitution on Structural Transformation and Optical Performances in I2BaMIVQ4 ( I = Li, Na, Cu, and Ag; MIV = Si, Ge, and Sn; Q = S and Se). , 2018, Inorganic chemistry.

[15]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[16]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[17]  Di Wu,et al.  Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects , 2017 .

[18]  M. Kanatzidis,et al.  Homologous Series of 2D Chalcogenides Cs-Ag-Bi-Q (Q = S, Se) with Ion-Exchange Properties. , 2017, Journal of the American Chemical Society.

[19]  Jing Zhao,et al.  High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity. , 2017, Journal of the American Chemical Society.

[20]  U. Waghmare,et al.  Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe2. , 2017, Journal of the American Chemical Society.

[21]  J. Prakash,et al.  Crystal structures of the four new quaternary copper(I)-selenides A 0.5 CuZrSe 3 and A CuYSe 3 ( A =Sr, Ba) , 2016 .

[22]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[23]  Jianwei Sun,et al.  Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. , 2016, Nature chemistry.

[24]  Anubhav Jain,et al.  YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure , 2016 .

[25]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[26]  Chen-Kuo Huang,et al.  High Temperature Thermoelectric Properties of Yb 14 MnSb 11 Prepared from Reaction of MnSb with the Elements , 2015 .

[27]  J. Miyazaki,et al.  Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating , 2015, Scientific Reports.

[28]  J. Prakash,et al.  Syntheses and Crystal Structures of BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3 , 2015 .

[29]  M. Kanatzidis,et al.  Tuning the Magnetic Properties of New Layered Iron Chalcogenides (BaF)2Fe2–xQ3 (Q = S, Se) by Changing the Defect Concentration on the Iron Sublattice , 2015 .

[30]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[31]  H. Kleinke,et al.  Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6. , 2015, Inorganic chemistry.

[32]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[33]  D. Keszler,et al.  Enhanced Thermoelectric Performance of Synthetic Tetrahedrites , 2014 .

[34]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[35]  Hsin Wang,et al.  Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity , 2013, Journal of Electronic Materials.

[36]  C. J. Walker,et al.  The heat capacity of matter beyond the Dulong–Petit value , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  J. Ibers,et al.  The Structural Chemistry of Quaternary Chalcogenides of the Type AMM'Q3 , 2012 .

[38]  J. Ibers,et al.  Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3 , 2012, Acta crystallographica. Section E, Structure reports online.

[39]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[40]  A. Maignan,et al.  Order–Disorder Transition in AgCrSe2: a New Route to Efficient Thermoelectrics , 2011 .

[41]  David J. Singh,et al.  Analysis of the thermoelectric properties of n-type ZnO , 2011 .

[42]  J. Ibers,et al.  Quaternary neptunium compounds: syntheses and characterization of KCuNpS(3), RbCuNpS(3), CsCuNpS(3), KAgNpS(3), and CsAgNpS(3). , 2009, Inorganic chemistry.

[43]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[44]  E. Choi,et al.  Syntheses, structures, magnetism, and optical properties of gadolinium scandium chalcogenides , 2009 .

[45]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[46]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[47]  A. Assoud,et al.  Thermoelectric properties of the new tellurides SrSc2Te4 and BaSc2Te4 in comparison to BaY2Te4 , 2007 .

[48]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[49]  I. Olekseyuk,et al.  Crystal structure of the Sc2PbX4 (X = S and Se) compounds , 2006 .

[50]  R. V. Van Duyne,et al.  Syntheses, structure, some band gaps, and electronic structures of CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y). , 2004, Inorganic chemistry.

[51]  R. Martin Electronic Structure: Density functional theory: foundations , 2004 .

[52]  J. Kolis,et al.  Synthesis and structural characterization of CsAg5Se3 and RbAg3Te2 , 2000 .

[53]  J. Ibers,et al.  Synthesis and Characterization of a Series of Quaternary Chalcogenides BaLnMQ3 (Ln=Rare Earth, M=Coinage Metal, Q=Se or Te) , 1999 .

[54]  J. Ibers,et al.  Crystal structure of rubidium silver hafnium tritelluride, RbAgHfTe3 , 1997 .

[55]  R. Cava,et al.  Colossal magnetoresistance in Cr-based chalcogenide spinels , 1997, Nature.

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  J. Ibers,et al.  New Quaternary Chalcogenides BaLnMQ3 (Ln = Rare Earth or Sc; M = Cu, Ag; Q= S, Se): II. Structure and Property Variation vs Rare-Earth Element , 1994 .

[60]  J. Ibers,et al.  New Quaternary Chalcogenides BaLnMQ3 (Ln - Rare Earth; M = Cu, Ag; Q = S, Se): I. Structures and Grinding-Induced Phase Transition in BaLaCuQ3 , 1994 .

[61]  J. Kolis,et al.  Synthesis of New Channeled Structures in Supercritical Amines: Preparation and Structure of RbAg5S3 and CsAg7S4 , 1994 .

[62]  J. Ibers,et al.  Synthesis, structure, and conductivity of the new group IV chalcogenides, KCuZrQ3 (Q = S, Se, Te) , 1992 .

[63]  Pickett,et al.  Anisotropic normal-state transport properties predicted and analyzed for high-Tc oxide superconductors. , 1988, Physical review. B, Condensed matter.

[64]  E. Parthé,et al.  STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .

[65]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[66]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[67]  R. L. Fitzpatrick,et al.  Electronic Transport in Semimetallic Cerium Sulfide , 1964 .

[68]  Linus Pauling,et al.  Atomic Radii and Interatomic Distances in Metals , 1947 .

[69]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[70]  I. Olekseyuk,et al.  Crystal structures of the RCuPbS3 (R = Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds , 2005 .

[71]  F. Geyer,et al.  Journal of , 1993 .