Protein–small molecule docking with receptor flexibility in iMOLSDOCK

We have earlier reported the iMOLSDOCK technique to perform ‘induced-fit’ peptide–protein docking. iMOLSDOCK uses the mutually orthogonal Latin squares (MOLSs) technique to sample the conformation and the docking pose of the small molecule ligand and also the flexible residues of the receptor protein, and arrive at the optimum pose and conformation. In this paper we report the extension carried out in iMOLSDOCK to dock nonpeptide small molecule ligands to receptor proteins. We have benchmarked and validated iMOLSDOCK with a dataset of 34 protein–ligand complexes as well as with Astex Diverse dataset, with nonpeptide small molecules as ligands. We have also compared iMOLSDOCK with other flexible receptor docking tools GOLD v5.2.1 and AutoDock Vina. The results obtained show that the method works better than these two algorithms, though it consumes more computer time. The source code and binary of MOLS 2.0 (under a GNU Lesser General Public License) are freely available for download at https://sourceforge.net/projects/mols2-0/files/.

[1]  Li Fei Ji,et al.  Substituent effects on the properties of the hemi-bonded complexes (XH2P···NH2Y)+ (X, Y=H, F, Cl, Br, NH2, CH3, OH) , 2015, Journal of Molecular Modeling.

[2]  António J. M. Ribeiro,et al.  Protein-ligand docking in the new millennium--a retrospective of 10 years in the field. , 2013, Current medicinal chemistry.

[3]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[4]  N. Gautham,et al.  Energy Landscape of Met-Enkephalin and Leu-Enkephalin Drawn Using Mutually Orthogonal Latin Squares Sampling , 2004 .

[5]  Jonathan W. Essex,et al.  FDS: Flexible ligand and receptor docking with a continuum solvent model and soft‐core energy function , 2003, J. Comput. Chem..

[6]  Jacques Monod,et al.  Allosteric Proteins and Cellular Control Systems , 1989 .

[7]  R. Friesner,et al.  Novel procedure for modeling ligand/receptor induced fit effects. , 2006, Journal of medicinal chemistry.

[8]  P Koehl,et al.  Mean-field minimization methods for biological macromolecules. , 1996, Current opinion in structural biology.

[9]  D Sam Paul,et al.  MOLS 2.0: software package for peptide modeling and protein–ligand docking , 2016, Journal of Molecular Modeling.

[10]  Rafael Najmanovich,et al.  Side‐chain flexibility in proteins upon ligand binding , 2000, Proteins.

[11]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[12]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[13]  Tim J. P. Hubbard,et al.  SCOP: a Structural Classification of Proteins database , 1999, Nucleic Acids Res..

[14]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[15]  K. Gundertofte,et al.  A comparison of conformational energies calculated by several molecular mechanics methods , 1996 .

[16]  Kiyosi Itô Encyclopedic dictionary of mathematics (2nd ed.) , 1993 .

[17]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[18]  I. Kuntz,et al.  Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. , 1988, Journal of medicinal chemistry.

[19]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[20]  David S. Goodsell,et al.  AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility , 2015, PLoS Comput. Biol..

[21]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[22]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[23]  F. Guengerich,et al.  Mechanisms of drug toxicity and relevance to pharmaceutical development. , 2011, Drug metabolism and pharmacokinetics.

[24]  Arun Prasad Pandurangan,et al.  A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling , 2008, J. Comput. Aided Mol. Des..

[25]  Sunil Kumar,et al.  Binding efficiencies of carbohydrate ligands with different genotypes of cholera toxin B: molecular modeling, dynamics and docking simulation studies , 2011, Journal of Molecular Modeling.

[26]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[27]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[28]  N. Gautham,et al.  Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: application to peptide structures. , 2003, Biophysical journal.

[29]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[30]  Jens Meiler,et al.  ROSETTALIGAND: Protein–small molecule docking with full side‐chain flexibility , 2006, Proteins.

[31]  Avraham Ben-Shimon,et al.  AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking. , 2015, Structure.

[32]  C. L. Liu,et al.  Introduction to Combinatorial Mathematics. , 1971 .

[33]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[34]  Jens Meiler,et al.  Rosetta Ligand docking with flexible XML protocols. , 2012, Methods in molecular biology.

[35]  N. Gautham,et al.  Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK) , 2012, Journal of Molecular Modeling.

[36]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[37]  N. Gautham,et al.  Exploring the conformational space of protein loops using a mean field technique with MOLS sampling , 2007, Proteins.

[38]  Marcel L. Verdonk,et al.  Protein-Ligand Docking against Non-Native Protein Conformers , 2008, J. Chem. Inf. Model..

[39]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[40]  D Sam Paul,et al.  iMOLSDOCK: Induced-fit docking using mutually orthogonal Latin squares (MOLS). , 2017, Journal of molecular graphics & modelling.

[41]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[42]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[43]  Namasivayam Gautham,et al.  A New Conformational Search Technique and Its Applications , 2006 .

[44]  I. Kuntz Structure-Based Strategies for Drug Design and Discovery , 1992, Science.

[45]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[46]  Paul N. Mortenson,et al.  Diverse, high-quality test set for the validation of protein-ligand docking performance. , 2007, Journal of medicinal chemistry.

[47]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[48]  Leslie A Kuhn,et al.  Side‐chain flexibility in protein–ligand binding: The minimal rotation hypothesis , 2005, Protein science : a publication of the Protein Society.

[49]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..