Visible light-induced electron transfer from di-mu-oxo-bridged dinuclear Mn complexes to Cr centers in silica nanopores.

The compound (bpy) 2Mn (III)(mu-O) 2Mn (IV)(bpy) 2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single Cr (VI) charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of Mn (III)(mu-O) 2Mn (IV) demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of Cr (VI) centers. The FT-Raman spectrum upon visible light excitation of the Cr (VI)-O (II) --> Cr (V)-O (I) ligand-to-metal charge transfer reveals electron transfer from Mn (III)(mu-O) 2Mn (IV) (Mn-O stretch at 700 cm (-1)) to Cr (VI), resulting in the formation of Cr (V) and Mn (IV)(mu-O) 2Mn (IV) (Mn-O stretch at 645 cm (-1)). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments are corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (Delta E o = -0.6 V) remain after several minutes, which points to spatial separation of Cr (V) and Mn (IV)(mu-O) 2Mn (IV) as a consequence of hole (O (I)) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well-defined transition metal molecular units, with the ultimate goal of performing endothermic, multielectron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.