Energy-balancing-based control design for power systems

This paper focused on the development of the Hamiltonian theory and building Hamiltonian model, especially power system. To obtain better control result of Hamiltonian system, adaptive control and energy-balancing-based control are considered. Combined those two methods with Hamiltonian control system, by using simulation, the performing result can be achieved.

[1]  T. Funabashi,et al.  Output power leveling of wind turbine generator by pitch angle control using adaptive control method , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[2]  Shuzhi Sam Ge,et al.  Approximate dissipative Hamiltonian realization and construction of local Lyapunov functions , 2007, Syst. Control. Lett..

[3]  Daizhan Cheng,et al.  Speed regulation of permanent magnet synchronous motor via feedback dissipative hamiltonian realisation , 2007 .

[4]  Daizhan Cheng,et al.  Nonlinear decentralized saturated controller design for power systems , 2003, IEEE Trans. Control. Syst. Technol..

[5]  G. La Terra,et al.  Optimal sizing procedure for hybrid solar wind power systems by fuzzy logic , 2006, MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference.

[6]  G. Arncliffe Percival The electric lamp industry , .

[7]  Y. Andrew,et al.  Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media , 2005 .

[8]  Daizhan Cheng,et al.  Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems , 2007, Autom..

[9]  H. Siguerdidjane,et al.  Nonlinear control of variable speed wind turbines for power regulation , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[10]  M.A. Matos,et al.  Operational reserve of a power system with a large amount of wind power , 2004, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[11]  Daizhan Cheng,et al.  Adaptive H ∞ excitation control of multimachine power systems via the Hamiltonian function method , 2004 .

[12]  Tomonobu Senjyu,et al.  Transient current analysis of induction generator for wind power generating system , 2002, IEEE/PES Transmission and Distribution Conference and Exhibition.

[13]  Romeo Ortega,et al.  Energy-balancing passivity-based control is equivalent to dissipation and output invariance , 2009, 2009 European Control Conference (ECC).

[14]  Hongnian Yu,et al.  Decentralized PD control for non-uniform motion of a Hamiltonian hybrid system , 2008, Int. J. Autom. Comput..

[15]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[16]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[17]  Jing Chen,et al.  Control Designs for a Class of Hamiltonian Systems with Applications to Ordinary Systems , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[18]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[19]  Y. D. Song,et al.  Variable speed control of wind turbines using nonlinear and adaptive algorithms , 2000 .

[20]  Youyi Wang,et al.  Robust decentralized nonlinear controller design for multimachine power systems , 1997, Autom..

[21]  Y. D. Song,et al.  Control of wind turbines using nonlinear adaptive field excitation algorithms , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[22]  Peter Goldsmith,et al.  Modified energy-balancing-based control for the tracking problem , 2008 .

[23]  S. Spurgeon,et al.  On the development of generalized Hamiltonian realizations , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[24]  Daizhan Cheng,et al.  Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units , 2006, Autom..

[25]  A. Bright,et al.  The electric-lamp industry , 1949 .

[26]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[27]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[28]  Daizhan Cheng,et al.  Dissipative Hamiltonian realization and energy-based L2-disturbance attenuation control of multimachine power systems , 2003, IEEE Trans. Autom. Control..

[29]  Q. Lu,et al.  Nonlinear Stabilizing Control of Multimachine Systems , 1989, IEEE Power Engineering Review.

[30]  Zairong Xi Adaptive stabilization of generalized Hamiltonian systems with dissipation and its applications to power systems , 2002, Int. J. Syst. Sci..

[31]  H. Siguerdidjane,et al.  Nonlinear Control of Variable Speed Wind Turbines without wind speed measurement , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Jie Wu,et al.  Auto-disturbance rejection controller in the wind energy conversion system , 2004, The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004..

[33]  Erkan Zergeroglu,et al.  Adaptive backstepping control of variable speed wind turbines , 2008, Int. J. Control.

[34]  Romeo Ortega,et al.  Energy-balancing passivity-based control , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[35]  D.J. Trudnowski,et al.  Fixed-speed wind-generator and wind-park modeling for transient stability studies , 2004, IEEE Transactions on Power Systems.

[36]  T. Gjengedal System control of large scale wind power by use of automatic generation control (AGC) , 2003, CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems, 2003. CIGRE/PES 2003..