Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes.

[1]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[2]  Gregory W. Gundersen,et al.  Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages , 2012, Science.

[3]  G. van den Bogaart,et al.  Controlling synaptotagmin activity by electrostatic screening , 2012, Nature Structural &Molecular Biology.

[4]  J. Briggs,et al.  Complexin arrests a pool of docked vesicles for fast Ca2+‐dependent release , 2012, The EMBO journal.

[5]  R. Jahn,et al.  Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex , 2012, Science.

[6]  G. van den Bogaart,et al.  Cis- and trans-membrane interactions of synaptotagmin-1 , 2012, Proceedings of the National Academy of Sciences.

[7]  Nam Ki Lee,et al.  Solution single‐vesicle assay reveals PIP2‐mediated sequential actions of synaptotagmin‐1 on SNAREs , 2012, The EMBO journal.

[8]  Frédéric Pincet,et al.  SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open , 2012, Science.

[9]  Patricia Grob,et al.  In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release , 2011, Proceedings of the National Academy of Sciences.

[10]  H. Grubmüller,et al.  Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation , 2011, Nature Structural &Molecular Biology.

[11]  Marta K. Domanska,et al.  Single SNARE-mediated vesicle fusion observed in vitro by polarized TIRFM. , 2010, Biophysical journal.

[12]  Marta K. Domanska,et al.  Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane. , 2010, Biophysical journal.

[13]  E. Neher,et al.  Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes , 2010, Science.

[14]  Changbong Hyeon,et al.  Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1 , 2010, Science.

[15]  Jeff Coleman,et al.  A fast, single-vesicle fusion assay mimics physiological SNARE requirements , 2010, Proceedings of the National Academy of Sciences.

[16]  F. Wouters,et al.  One SNARE complex is sufficient for membrane fusion , 2010, Nature Structural &Molecular Biology.

[17]  Marta K. Domanska,et al.  Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion* , 2009, The Journal of Biological Chemistry.

[18]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[19]  M. Verhage,et al.  Vesicle Docking in Regulated Exocytosis , 2008, Traffic.

[20]  R. Jahn,et al.  Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids , 2007, Nature Structural &Molecular Biology.

[21]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[22]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[23]  L. Tamm,et al.  Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. , 2006, Biophysical journal.

[24]  Alexander Stein,et al.  N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion , 2006, Science.

[25]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[26]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[27]  Edwin R Chapman,et al.  Ca2+–synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion , 2006, Nature Structural &Molecular Biology.

[28]  J. Rizo,et al.  SNARE-mediated lipid mixing depends on the physical state of the vesicles. , 2006, Biophysical journal.

[29]  A. Brunger,et al.  Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. , 2006, Biophysical journal.

[30]  Edwin R Chapman,et al.  SNARE-driven, 25-millisecond vesicle fusion in vitro. , 2005, Biophysical journal.

[31]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[32]  A. Brunger,et al.  Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). , 2004, Biophysical journal.

[33]  D. Mitter,et al.  The synaptophysin/synaptobrevin complex dissociates independently of neuroexocytosis , 2004, Journal of neurochemistry.

[34]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[35]  C. Seidel,et al.  Determinants of liposome fusion mediated by synaptic SNARE proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Dirk Fasshauer,et al.  A Transient N-terminal Interaction of SNAP-25 and Syntaxin Nucleates SNARE Assembly* , 2004, Journal of Biological Chemistry.

[37]  R. Schneggenburger,et al.  Presynaptic Capacitance Measurements and Ca2+ Uncaging Reveal Submillisecond Exocytosis Kinetics and Characterize the Ca2+ Sensitivity of Vesicle Pool Depletion at a Fast CNS Synapse , 2003, The Journal of Neuroscience.

[38]  M. L. Wagner,et al.  Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. , 2000, Biophysical journal.

[39]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[40]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[41]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[42]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.