Measuring total corneal power before and after laser in situ keratomileusis with high‐speed optical coherence tomography

[1]  J. Baum,et al.  Central and peripheral corneal thickness. A clinical study. , 1968, Archives of ophthalmology.

[2]  Optometric Instrumentation , 1983 .

[3]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[4]  W. Portellinha,et al.  Central and peripheral corneal thickness in newborns , 1991, Acta ophthalmologica.

[5]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[6]  Francesco Carones,et al.  Keratometric index, videokeratography, and refractive surgery , 1998, Journal of cataract and refractive surgery.

[7]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[8]  Ronald B. Rabbetts,et al.  Bennett and Rabbetts' clinical visual optics , 1998 .

[9]  B. Seitz,et al.  Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy. , 1999, Ophthalmology.

[10]  D. Reinstein,et al.  Accuracy of Orbscan total optical power maps in detecting refractive change after myopic laser in situ keratomileusis. , 1999, Journal of cataract and refractive surgery.

[11]  J. Chen,et al.  Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. , 1999, Ophthalmology.

[12]  J Moreno-Montañés,et al.  Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. , 2000, Ophthalmology.

[13]  H. Gimbel,et al.  Refractive error in cataract surgery after previous refractive surgery. , 2000, Journal of cataract and refractive surgery.

[14]  H V Gimbel,et al.  Accuracy and predictability of intraocular lens power calculation after photorefractive keratectomy. , 2000, Journal of cataract and refractive surgery.

[15]  D. Durrie,et al.  Intraocular lens power calculations using corneal topography after photorefractive keratectomy. , 2001, American journal of ophthalmology.

[16]  A. Neubauer,et al.  Central Corneal Thickness Measurement with a Retinal Optical Coherence Tomography Device Versus Standard Ultrasonic Pachymetry , 2001, Cornea.

[17]  T. Oshika,et al.  Corneal forward shift after excimer laser keratorefractive surgery , 2003, Seminars in ophthalmology.

[18]  Raj Shekhar,et al.  Mathematical model of corneal surface smoothing after laser refractive surgery. , 2003, American journal of ophthalmology.

[19]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[20]  M. Leyland Validation of Orbscan II posterior corneal curvature measurement for intraocular lens power calculation , 2004, Eye.

[21]  P. Schor,et al.  A direct method to measure the power of the central cornea after myopic laser in situ keratomileusis. , 2004, Archives of ophthalmology.

[22]  S. Yun,et al.  115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. , 2005, Optics letters.

[23]  C. Roberts,et al.  Response of the posterior corneal surface to laser in situ keratomileusis for myopia , 2005, Journal of cataract and refractive surgery.

[24]  J. Izatt,et al.  Anterior chamber width measurement by high-speed optical coherence tomography. , 2005, Ophthalmology.

[25]  Joseph A Izatt,et al.  Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. , 2005, Archives of ophthalmology.

[26]  E. Jarade,et al.  Intraocular lens power calculation following LASIK: determination of the new effective index of refraction. , 2006, Journal of refractive surgery.