Hypercomputation and the Physical Church‐Turing Thesis

A version of the Church‐Turing Thesis states that every effectively realizable physical system can be defined by Turing Machines (‘Thesis P’); in this formulation the Thesis appears an empirical, more than a logico‐mathematical, proposition. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non‐well‐founded, analog, quantum, and retrocausal computation. These models depend on infinite computation, explicitly or implicitly, and appear physically implausible; moreover, even if infinite computation were realizable, the Halting Problem would not be affected. Therefore, Thesis P is not essentially different from the standard Church‐Turing Thesis. 1Introduction 2Computability and incomputability 3The physical interpretation of the Church‐Turing Thesis 4Supertasks and infinite computation 5Computation on non‐well‐founded domains 6Analog computation 7Quantum computation 8Retrocausal computation 9Conclusions

[1]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[2]  J. Earman,et al.  Comments on Laraudogoitia's ‘Classical Particle Dynamics, Indeterminism and a Supertask’ , 1998, The British Journal for the Philosophy of Science.

[3]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[4]  Does Quantum Mechanics imply influences acting backward in time in impact series experiments , 1998, quant-ph/9801061.

[5]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[6]  E. B. Davies Building Infinite Machines , 2001, The British Journal for the Philosophy of Science.

[7]  Luis Mateus Rocha,et al.  ARTIFICIAL SEMANTICALLY CLOSED OBJECTS , 1998 .

[8]  T. Toffoli Non-Conventional Computers , 1998 .

[9]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[10]  Cristian S. Calude,et al.  Counterfactual Effect, the Halting Problem, and the Busy Beaver Function , 1999 .

[11]  Tien D. Kieu,et al.  Quantum Algorithm for Hilbert's Tenth Problem , 2001, ArXiv.

[12]  Klaus Weihrauch,et al.  Is wave propagation computable or can wave computers beat the turing machine? , 2002 .

[13]  Cristian S. Calude,et al.  Coins, Quantum Measurements, and Turing's Barrier , 2002, Quantum Inf. Process..

[14]  M. Nielsen On the units of bipartite entanglement: is sixteen ounces of entanglement always equal to one pound? , 2000, quant-ph/0011063.

[15]  B. Jack Copeland,et al.  Turing’s O-machines, Searle, Penrose and the brain , 1998 .

[16]  John Earman,et al.  Outlawing time machines: Chronology protection theorems , 1995 .

[17]  August Stern Matrix logic , 1988 .

[18]  Paul Young,et al.  An introduction to the general theory of algorithms , 1978 .

[19]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[20]  Peter Wegner,et al.  Interactive , 2021, Encyclopedia of the UN Sustainable Development Goals.

[21]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[22]  Time Travel and Modern Physics , 2002, Royal Institute of Philosophy Supplement.

[23]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[24]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[25]  G. Kampis Self-modifying systems in biology and cognitive science , 1991 .

[26]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[27]  Hava T. Siegelmann,et al.  Discontinuities in Recurrent Neural Networks , 1999, Neural Computation.

[28]  F. Tipler,et al.  The Physics of Immortality: Modern Cosmology, God and the Resurrection of the Dead , 1995 .

[29]  Lars Löfgren,et al.  An axiomatic explanation of complete self-reproduction , 1968 .

[30]  John G. Cramer,et al.  An Overview of the Transactional Interpretation , 1988 .

[31]  Black Hole Evaporation Entails an Objective Passage of Time , 2000, quant-ph/0012081.

[32]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[33]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[34]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.

[35]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[36]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[37]  James B. Hartle,et al.  Computability and physical theories , 1986, 1806.09237.

[38]  B. Jack Copeland,et al.  Super Turing-machines , 1998, Complex..

[39]  B. Jack Copeland,et al.  The Broad Conception of Computation , 1997 .

[40]  R. Rucker The One/Many Problem in the Foundations of Set Theory , 1977 .

[41]  Philip D. Welch,et al.  The Length of Infinite Time Turing Machine Computations , 2000 .

[42]  Cristian S. Calude,et al.  Reflections on quantum computing , 2000, Complex..

[43]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[44]  Bruce J. MacLennan,et al.  Grounding Analog Computers , 1993 .

[45]  B. Jack Copeland,et al.  EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .

[46]  E. Knill Quantum Randomness and Nondeterminism , 1996 .

[47]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[48]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[49]  H. Stowell The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.

[50]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[51]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[52]  B. Dickinson,et al.  The complexity of analog computation , 1986 .

[53]  Richard Jozsa Quantum Effects in Algorithms , 1998, QCQC.

[54]  T. Banks Lectures on Black Holes and Information Loss , 1994, hep-th/9412131.

[55]  Karl Svozil,et al.  On the computational power of physical systems, undecidability, the consistency of phenomena and the practical uses of paradoxa , 2009 .

[56]  Michael Prasse,et al.  Why Church's Thesis Still Holds. Some Notes on Peter Wegner's Tracts on Interaction and Computability , 1998, Comput. J..

[57]  Mike Stannett,et al.  X-machines and the halting problem: Building a super-turing machine , 1990, Formal Aspects of Computing.

[58]  Classical Particle Dynamics, Indeterminism and a Supertask , 1997, The British Journal for the Philosophy of Science.

[59]  R. Penrose,et al.  The Large, the Small and the Human Mind by Roger Penrose. Cambridge University Press, 1997, xviii + 185 pp. £14.95 , 1998, Philosophy.

[60]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[61]  B. J. Copeland,et al.  Alan Turing’s Forgotten Ideas in Computer Science , 1999 .

[62]  G. Kreisel Church's Thesis: A Kind of Reducibility Axiom for Constructive Mathematics , 1970 .

[63]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[64]  M. B. Pour-El,et al.  The wave equation with computable initial data such that its unique solution is not computable , 1981 .

[65]  V. Kreinovich,et al.  Towards Computers of Generation Omega - Non-Equilibrium Thermodynamics, Granularity, and Acausal Processes: A Brief Survey , 1997 .

[66]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[67]  S. Cooper Models and Computability: Clockwork or Turing U/universe? - Remarks on Causal Determinism and Computability , 1999 .

[68]  Robert I. Soare,et al.  Computability and Recursion , 1996, Bulletin of Symbolic Logic.

[69]  Oron Shagrir,et al.  Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.

[70]  Cristian S. Calude,et al.  Strong Determinism vs. Computability , 1994, quant-ph/9412004.

[71]  J. Johnson,et al.  Noise, physics, and non-Turing computation , 2003 .

[72]  T. Toffoli Quo vadimus? — Much hard work is still needed , 1998 .

[73]  David Deutsch,et al.  Machines, logic and quantum physics , 2000, Bull. Symb. Log..

[74]  Y. Ng From computation to black holes and space-time foam. , 2000, Physical review letters.

[75]  Christoph Simon,et al.  Probabilistic instantaneous quantum computation , 2003 .

[76]  Warren D. Smith,et al.  Church's Thesis Meets Quantum Mechanics , 1999 .

[77]  Howard DeLong,et al.  A Profile of Mathematical Logic , 2004 .

[78]  J. Earman,et al.  Take a Ride on a Time Machine , 2003 .

[79]  K. Svozil The Church-Turing thesis as a guiding principle for physics , 1997, quant-ph/9710052.

[80]  Stephen Smale,et al.  Some Remarks on the Foundations of Numerical Analysis , 1990, SIAM Rev..

[81]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[82]  H. H. Soleng,et al.  Time Machines:. the Principle of Self-Consistency as a Consequence of the Principle of Minimal Action , 1995 .

[83]  G. Kreisel,et al.  Hilbert's programme and the search for automatic proof procedures , 1970 .

[84]  Raymond J. Nelson,et al.  Church's thesis and cognitive science , 1987, Notre Dame J. Formal Log..

[85]  Judson C. Webb Gödel’s Theorems and Church’s Thesis: , 1983 .

[86]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[87]  M. Burgin Mathematical Models for Artificial Intelligence , 2001 .

[88]  M. A. Nielsen Computable Functions, Quantum Measurements, and Quantum Dynamics , 1997 .

[89]  Masanao Ozawa Quantum Turing Machines: Local Transition, Preparation, Measurement, and Halting , 1998 .

[90]  C. Michaux,et al.  A survey on real structural complexity theory , 1997 .

[91]  Carol E. Cleland Recipes, Algorithms, and Programs , 2004, Minds and Machines.

[92]  D. Saari,et al.  Off to infinity in finite time , 1995 .

[93]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[94]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[95]  Carol E. Cleland Is the Church-Turing thesis true? , 1993, Minds and Machines.

[96]  M. Burgin,et al.  Super-recursive Algorithms as a Tool for High Performance Computing , 1999 .

[97]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[98]  N. Bhattacharya,et al.  Implementation of quantum search algorithm using classical Fourier optics. , 2001, Physical review letters.

[99]  Richard Jozsa,et al.  Counterfactual computation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[100]  C. Isham,et al.  Spacetime and the Philosophical Challenge of Quantum Gravity , 2001 .

[101]  Mike Stannett,et al.  Computation and Hypercomputation , 2003, Minds and Machines.

[102]  R ROSEN,et al.  Church's thesis and its relation to the concept of realizability in biology and physics. , 1962, The Bulletin of mathematical biophysics.

[103]  Jr.,et al.  A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation , 2000, quant-ph/0007045.

[104]  Masanao Ozawa Measurability and Computability , 1998 .

[105]  Boris Tsirelson The quantum algorithm of Kieu does not solve the Hilbert's tenth problem , 2001 .

[106]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[107]  M. V. Vol’kenshtein [Biology and physics]. , 1973, Успехи физиологических наук.

[108]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[109]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[110]  Lee A. Rubel,et al.  Digital simulation of analog computation and Church's thesis , 1989, Journal of Symbolic Logic.

[111]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[112]  D. Smithwds,et al.  History of \church's Theses" and a Manifesto on Converting Physics into a Rigorous Algorithmic Discipline , 1999 .

[113]  Panu Raatikainen,et al.  Algorithmic Information Theory and Undecidability , 2000, Synthese.

[114]  Felipe Cucker,et al.  COMPLEXITY AND REAL COMPUTATION: A MANIFESTO , 1996 .

[115]  Itamar Pitowsky Quantum Speed‐up of Computations , 2002, Philosophy of Science.

[116]  B. Jack Copeland,et al.  Narrow Versus Wide Mechanism: Including a Re-Examination of Turing’s Views on the Mind-Machine Issue , 2000 .

[117]  Robert M. Solovay A Version of Ω for which ZFC Cannot Predict a Single Bit , 2000, Finite Versus Infinite.

[118]  A. Galton,et al.  The Church-Turing Thesis : Its Nature and Status , 2004 .

[119]  Eduardo D. Sontag,et al.  A Precise Characterization of the Class of Languages Recognized by Neural Nets under Gaussian and Other Common Noise Distributions , 1998, NIPS.

[120]  Olivier Bournez,et al.  On the computational power and super-Turing capabilities of dynamical systems , 1995 .

[121]  Artur Ekert,et al.  Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[122]  Rudy Rucker,et al.  Infinity and the Mind , 1982 .

[123]  B. Copeland,et al.  Beyond the universal Turing machine , 1999 .

[124]  Tien D. Kieu,et al.  Computing the non-computable , 2002, ArXiv.